ICode9

精准搜索请尝试: 精确搜索
首页 > 其他分享> 文章详细

【题解】Luogu-P5221 Product

2022-01-20 20:02:08  阅读:155  来源: 互联网

标签:lfloor Product right frac prod 题解 rfloor P5221 left


P5221 Product

Description

  • 给定整数 \(n\),请求出

    \[\left[\prod_{i = 1}^n \prod_{j = 1}^n \dfrac{\operatorname{lcm}(i, j)}{\gcd(i, j)} \right] \bmod 104857601 \]

  • 对于 \(100\%\) 的数据,\(1\le n\le 10^6\)。

Solution

\[\begin{aligned} \prod_{i = 1}^n \prod_{j = 1}^n \dfrac{\operatorname{lcm}(i, j)}{\gcd(i, j)} & = \prod_{i = 1}^n \prod_{j = 1}^n \dfrac{ij}{\gcd(i, j)^2} \\ & = \dfrac{\prod\limits_{i = 1}^n \prod\limits_{j = 1}^n ij}{\left[\prod\limits_{i = 1}^n \prod\limits_{j = 1}^n \gcd(i, j) \right]^2} \end{aligned} \]

对于分子

\[\begin{aligned} \prod_{i = 1}^n \prod_{j = 1}^n ij & = \prod_{i = 1}^n i^n\cdot n! \\ & = (n!)^n \cdot (n!)^n \\ & = (n!)^{2n} \end{aligned} \]

对于分母(忽略 \(2\) 次方)

\[\begin{aligned} \prod_{i = 1}^n \prod_{j = 1}^n \gcd(i, j) & = \prod_{d = 1}^n \prod_{i = 1}^n \prod_{j = 1}^n d[\gcd(i, j) = d] \\ & = \prod_{d = 1}^n \prod_{i = 1}^{\left\lfloor\frac{n}{d}\right\rfloor} \prod_{j = 1}^{\left\lfloor\frac{n}{d}\right\rfloor} d[\gcd(i, j) = 1] \\ & = \prod_{d = 1}^n d^{\sum_{i = 1}^{\left\lfloor\frac{n}{d}\right\rfloor} \sum_{j = 1}^{\left\lfloor\frac{n}{d}\right\rfloor} [\gcd(i, j) = 1]} \end{aligned} \]

拆指数

\[\sum_{i = 1}^{\left\lfloor\frac{n}{d}\right\rfloor} \sum_{j = 1}^{\left\lfloor\frac{n}{d}\right\rfloor} [\gcd(i, j) = 1] = \sum_{k = 1}^{\left\lfloor\frac{n}{d}\right\rfloor} \mu(k) \left\lfloor\dfrac{n}{dk}\right\rfloor^2 \]

代回去

\[\prod_{d = 1}^n d^{\sum_{i = 1}^{\left\lfloor\frac{n}{d}\right\rfloor} \sum_{j = 1}^{\left\lfloor\frac{n}{d}\right\rfloor} [\gcd(i, j) = 1]} = \prod_{d = 1}^n d^{\sum_{k = 1}^{\left\lfloor\frac{n}{d}\right\rfloor} \mu(k) \left\lfloor\frac{n}{dk}\right\rfloor^2} \]

指数用欧拉定理 \(\bmod (p - 1)\) 转成正数并降至 \(\Omicron(p)\) 级别。

暴力枚举 + 整除分块。

时间复杂度为 \(\Omicron\left(\sum_{i = 1}^n \sqrt{\dfrac{n}{i}} \cdot \log p \right) = \Omicron(\log p \sum_{i = 1}^n \sqrt{\dfrac{n}{i}})\)。

当积分算

\[\int_1^n \sqrt{\dfrac{n}{x}}\, dx = 2n - 2\sqrt{n} \]

所以整个是 \(\Omicron(n\log p)\) 的。

注意本题卡空间,\(\mu\) 数组的前缀和直接覆盖到 \(\mu\) 数组上即可。

Code

// 18 = 9 + 9 = 18.
#include <iostream>
#include <cstdio>
#define Debug(x) cout << #x << "=" << x << endl
typedef long long ll;
using namespace std;

const int MAXN = 1e6 + 5;
const int MOD = 104857601;

int p[MAXN / 10], mu[MAXN];
bool vis[MAXN];

void pre(int n)
{
	mu[1] = 1;
	for (int i = 2; i <= n; i++)
	{
		if (!vis[i])
		{
			p[++p[0]] = i;
			mu[i] = -1;
		}
		for (int j = 1; j <= p[0] && i * p[j] <= n; j++)
		{
			vis[i * p[j]] = true;
			if (i % p[j] == 0)
			{
				mu[i * p[j]] = 0;
				break;
			}
			mu[i * p[j]] = mu[i] * mu[p[j]];
		}
	}
	for (int i = 1; i <= n; i++)
	{
		mu[i] = (mu[i - 1] + mu[i] + MOD - 1) % (MOD - 1);
	}
}

int GetSum(int l, int r)
{
	return (mu[r] - mu[l - 1] + MOD - 1) % (MOD - 1);
}

int block(int n)
{
	int res = 0;
	for (int l = 1, r; l <= n; l = r + 1)
	{
		int k = n / l;
		r = n / k;
		res = (res + (ll)GetSum(l, r) * k % (MOD - 1) * k % (MOD - 1)) % (MOD - 1);
	}
	return res;
}

int qpow(int a, int b)
{
	int base = a, ans = 1;
	while (b)
	{
		if (b & 1)
		{
			ans = (ll)ans * base % MOD;
		}
		base = (ll)base * base % MOD;
		b >>= 1;
	}
	return ans;
}

int inv(int a)
{
	return qpow(a, MOD - 2);
}

int main()
{
	int n;
	scanf("%d", &n);
	pre(n);
	int fac = 1;
	for (int i = 1; i <= n; i++)
	{
		fac = (ll)fac * i % MOD;
	}
	fac = qpow(fac, 2 * n);
	int ans = 1;
	for (int i = 1; i <= n; i++)
	{
		ans = (ll)ans * qpow(i, block(n / i)) % MOD;
	}
	printf("%d\n", (ll)fac * inv((ll)ans * ans % MOD) % MOD);
	return 0;
}

标签:lfloor,Product,right,frac,prod,题解,rfloor,P5221,left
来源: https://www.cnblogs.com/mangoworld/p/Solution-Luogu-P5221.html

本站声明: 1. iCode9 技术分享网(下文简称本站)提供的所有内容,仅供技术学习、探讨和分享;
2. 关于本站的所有留言、评论、转载及引用,纯属内容发起人的个人观点,与本站观点和立场无关;
3. 关于本站的所有言论和文字,纯属内容发起人的个人观点,与本站观点和立场无关;
4. 本站文章均是网友提供,不完全保证技术分享内容的完整性、准确性、时效性、风险性和版权归属;如您发现该文章侵犯了您的权益,可联系我们第一时间进行删除;
5. 本站为非盈利性的个人网站,所有内容不会用来进行牟利,也不会利用任何形式的广告来间接获益,纯粹是为了广大技术爱好者提供技术内容和技术思想的分享性交流网站。

专注分享技术,共同学习,共同进步。侵权联系[81616952@qq.com]

Copyright (C)ICode9.com, All Rights Reserved.

ICode9版权所有