ICode9

精准搜索请尝试: 精确搜索
首页 > 其他分享> 文章详细

线性代数与simplex

2019-03-23 09:45:03  阅读:378  来源: 互联网

标签:12 21 22 矩阵 线性代数 simplex cases vdots


线性方程组:

\(i:1-n\)
\(j:1-m\)
\({\begin{cases}a_{11}x_1+a_{12}x_2+a_{13}x_3+\cdots+a_{1n}x_n=b_1\\a_{21}x_1+a_{22}x_2+a_{23}x_3+\cdots+a_{2n}x_n=b_2\\~~~~\vdots~~~~~~~~~~~~\vdots~~~~~~~~~~~~\vdots~~~~~~~~~~\vdots~~~~~~~~~~\vdots~~~~~~~~~\vdots\\a_{m1}x_1+a_{m2}x_2+a_{m3}x_3+\cdots+a_{mn}x_n=b_m\end{cases}}\)
系数矩阵:方程组各项系数\((a_{ij})\)按顺序组成的矩阵\(A\)。
未知数矩阵:未知数\(x_i\)组成的列向量\(X\)。
常数项矩阵:等式右侧常数\((b_j)\)组成的矩阵\(B\)。
增广矩阵:系数矩阵最右侧补充一个常数项矩阵。
线性方程组与矩阵的一个关系:
设两个线性变换:
\({\begin{cases}y_1=a_{11}x_1+a_{12}x_2+a_{13}x_3\\y_2=a_{21}x_1+a_{22}x_2+a_{23}x_3\end{cases}}\)
\({\begin{cases}x_1=b_{11}t_1+b_{12}t_2\\x_2=b_{21}t_1+b_{22}t_2\\x_3=b_{31}t_1+b_{32}t_2\end{cases}}\)
那么\(y,t\)之间的关系的系数矩阵是
\(\left(\begin{matrix}a_{11}&a_{12}&a_{13}\\a_{21}&a_{22}&a_{23}\end{matrix}\right)\times\left(\begin{matrix}b_{11}&b_{12}\\b_{21}&b_{22}\\b_{31}&b_{32}\end{matrix}\right)=\cdots\)

simplex:

\(1.\)建立系数矩阵,辅助松弛变量略过。
\(2.\)寻找\(b_l<0\)随机取,若无则\(return\),寻找\(a_{l,e}<0\)随机取,若无则无解,\(pivot(l,e)\),重复。
\(3.\)找\(max(c_e)\),小于0则结束,否则找\(min(b_l/a_{l,e})\),等于\(INF\)则解为\(INF\),然后\(pivot(l,e)\)。
注意:
\(1.ans+=c_e\times b_l\),\(c_e\)为变动前,\(b_l\)为变动后。
\(2.a_{l,e}\)变为倒数,\(e\)列其他为其相反数\(/a_{l,e}\)(原)。
\(3.\)其余相当于把\(a_{l,e}\)变成\(1\),\(e\)列其他变为\(0\)所做的高斯消元操作。
如何输出解:
\(1.i=1-n,id[i]=i\)
\(2.pivot(l,e)\)时\(swap(id[l+n],id[e])\)(不断记当前列和省略列是哪个变量)。
\(3.x_{id_{n+i}}=b_i\)所有的基变量的取值就是\(b\),非基变量的取值是\(0\)。

克拉默法则与线性方程组求解:

由\(AX=B\),得\(X=A^{-1}B\)

标签:12,21,22,矩阵,线性代数,simplex,cases,vdots
来源: https://www.cnblogs.com/Smeow/p/10582559.html

本站声明: 1. iCode9 技术分享网(下文简称本站)提供的所有内容,仅供技术学习、探讨和分享;
2. 关于本站的所有留言、评论、转载及引用,纯属内容发起人的个人观点,与本站观点和立场无关;
3. 关于本站的所有言论和文字,纯属内容发起人的个人观点,与本站观点和立场无关;
4. 本站文章均是网友提供,不完全保证技术分享内容的完整性、准确性、时效性、风险性和版权归属;如您发现该文章侵犯了您的权益,可联系我们第一时间进行删除;
5. 本站为非盈利性的个人网站,所有内容不会用来进行牟利,也不会利用任何形式的广告来间接获益,纯粹是为了广大技术爱好者提供技术内容和技术思想的分享性交流网站。

专注分享技术,共同学习,共同进步。侵权联系[81616952@qq.com]

Copyright (C)ICode9.com, All Rights Reserved.

ICode9版权所有