ICode9

精准搜索请尝试: 精确搜索
首页 > 其他分享> 文章详细

代数余子式和伴随矩阵

2022-08-18 22:01:06  阅读:138  来源: 互联网

标签:cdot 矩阵 det ij 行列式 代数 余子式


代数余子式

给定 \(n\) 阶方阵 \(A=(a_{ij})\),定义 \(a_{ij}\) 的余子式 \(M_{ij}\) 为 \(A\) 划去第 \(i\) 行第 \(j\) 列后的行列式,\(a_{ij}\) 的代数余子式 \(A_{ij}=(−1)^{i+j}M_{ij}\) 。

代数余子式可以用于行列式的求值,比如按第 \(r\) 行展开:

\[\det A=\sum_{c=1}^na_{rc}A_{rc} \]

按第 \(c\) 列展开是同理的。

伴随矩阵

定义

在 \((1)\) 式中,如果把 \(a_{rc}\) 中的 \(r\) 替换成 \(i≠r\),则该乘积对应了将 \(A\) 的第 \(i\) 行替换成第 \(r\) 行后的行列式——该行列式有两行相等,所以它等于 \(0\) 。

所以我们有 \(\sum_{c=1}^na_{ic}A_{jc}=\det A \cdot [i=j]\),把它写成矩阵乘法就是:

\[A(A_{ij})^{\mathrm T}=\det A \cdot I_n \]

我们定义 \(A^*=(A_{ij})^{\mathrm T}\) 是 \(A\) 的伴随矩阵。

同样的结论对列也成立,所以 \(AA^*=A^*A=\det A \cdot I_n\) 。

计算

如果 \(r(A)=n\),用高斯消元法分别求出 \(\det A\) 和 \(A−1\),\(A^*=\det A \cdot A^{-1}\) 。

如果 \(r(A)⩽n−2\),\(A\) 的任意 \(n−1\) 阶子式都为 \(0\),所以 \(A^*=O\) 。

如果 \(r(A)=n−1\):

标签:cdot,矩阵,det,ij,行列式,代数,余子式
来源: https://www.cnblogs.com/A-Quark/p/16600271.html

本站声明: 1. iCode9 技术分享网(下文简称本站)提供的所有内容,仅供技术学习、探讨和分享;
2. 关于本站的所有留言、评论、转载及引用,纯属内容发起人的个人观点,与本站观点和立场无关;
3. 关于本站的所有言论和文字,纯属内容发起人的个人观点,与本站观点和立场无关;
4. 本站文章均是网友提供,不完全保证技术分享内容的完整性、准确性、时效性、风险性和版权归属;如您发现该文章侵犯了您的权益,可联系我们第一时间进行删除;
5. 本站为非盈利性的个人网站,所有内容不会用来进行牟利,也不会利用任何形式的广告来间接获益,纯粹是为了广大技术爱好者提供技术内容和技术思想的分享性交流网站。

专注分享技术,共同学习,共同进步。侵权联系[81616952@qq.com]

Copyright (C)ICode9.com, All Rights Reserved.

ICode9版权所有