ICode9

精准搜索请尝试: 精确搜索
首页 > 其他分享> 文章详细

均值不等式证明

2022-03-01 08:00:31  阅读:211  来源: 互联网

标签:right frac limits 不等式 cdot 均值 sqrt 证明 cdots


  设$x_{1},~x_{2},~\ldots,~x_{n}$为非负实数,其中有:

  调和平均数$$H_{n} = \frac{n}{\frac{1}{x_{1}} + \frac{1}{x_{2}} + \cdots + \frac{1}{x_{n}}} = \frac{n}{\sum\limits_{i = 1}^{n}\frac{1}{x_{i}}}$$

  几何平均数$$G_{n} = \sqrt[n]{x_{1} \cdot x_{2} \cdot \cdots \cdot x_{n}} = \sqrt[n]{\prod\limits_{i = 1}^{n}x_{i}}$$

  算数平均数$$A_{n} = \frac{x_{1} + x_{2} + \cdots + x_{n}}{n} = \frac{\sum\limits_{i = 1}^{n}x_{i}}{n}$$

  平方平均数$$Q_{n} = \sqrt{\frac{x_{1}^{2} + x_{2}^{2} + \cdots + x_{n}^{2}}{n}} = \sqrt{\frac{\sum\limits_{i = 1}^{n}x_{i}^{2}}{n}}$$

  均值不等式:$H_{n} \leq G_{n} \leq A_{n} \leq Q_{n}$,即$$\frac{n}{\sum\limits_{i = 1}^{n}\frac{1}{x_{i}}} \leq \sqrt[n]{\prod\limits_{i = 1}^{n}x_{i}} \leq \frac{\sum\limits_{i = 1}^{n}x_{i}}{n} \leq \sqrt{\frac{\sum\limits_{i = 1}^{n}x_{i}^{2}}{n}}$$当$x_{1} = x_{2} = \cdots = ~x_{n}$时,取等号。

 

证明

  先用归纳法证明$G_{n} \leq A_{n}$。

  当$n = 2$时,由不等式 $a + b \geq 2 \cdot \sqrt{ab}$ 得到 $\frac{a + b}{2} \geq \sqrt{ab}$,成立。

  假设当$n = k$时成立,当$n = k + 1$时,有$$\begin{align*} A_{k + 1} &= \frac{\left( {k + 1} \right) \cdot A_{k + 1} + \left( {k - 1} \right) \cdot A_{k + 1}}{2k} \\ &= \frac{x_{1} + x_{2} + \cdots + x_{k} + x_{k + 1} + A_{k + 1} + A_{k + 1} + \cdots + A_{k + 1}}{2k} \\ &= \frac{\left( {x_{1} + x_{2} + \cdots + x_{k}} \right) + \left( {x_{k + 1} + A_{k + 1} + \cdots + A_{k + 1}} \right)}{2k} \\ &\geq \frac{1}{2k}\left( {k \cdot \sqrt[k]{x_{1} \cdot x_{2} \cdot \cdots \cdot x_{k}} + k \cdot \sqrt[k]{x_{k + 1} \cdot A_{k + 1}^{k - 1}}} \right) \\ &= \frac{1}{2}\left( {\sqrt[k]{x_{1} \cdot x_{2} \cdot \cdots \cdot x_{k}} + \sqrt[k]{x_{k + 1} \cdot A_{k + 1}^{k - 1}}} \right) \end{align*}$$由不等式$a + b \geq 2 \cdot \sqrt{ab}$得$$\begin{align*} A_{k + 1} &\geq \sqrt[{2k}]{x_{1} \cdot x_{2} \cdot \cdots \cdot x_{k} \cdot x_{k + 1} \cdot A_{k + 1}^{k - 1}} \\ A_{k + 1}^{2k} &\geq x_{1} \cdot x_{2} \cdot \cdots \cdot x_{k} \cdot x_{k + 1} \cdot A_{k + 1}^{k - 1} \\ A_{k + 1}^{k + 1} &\geq x_{1} \cdot x_{2} \cdot \cdots \cdot x_{k} \cdot x_{k + 1} \\ A_{k + 1} &\geq \sqrt[{k + 1}]{x_{1} \cdot x_{2} \cdot \cdots \cdot x_{k} \cdot x_{k + 1}} \end{align*}$$即$$\frac{x_{1} + x_{2} + \cdots + x_{k + 1}}{k + 1} \geq \sqrt[{k + 1}]{x_{1} \cdot x_{2} \cdot \cdots \cdot x_{k + 1}}$$得证。

  下面证明$H_{n} \leq G_{n}$。

  很简单,只需要将不等式$G_{n} \leq A_{n}$中的$x_{i}$都替换成$\frac{1}{x_{i}}$,得到$$\frac{\frac{1}{x_{1}} + \frac{1}{x_{2}} + \cdots + \frac{1}{x_{n}}}{n} \geq \sqrt[n]{\frac{1}{x_{1}} \cdot \frac{1}{x_{2}} \cdot \cdots \cdot \frac{1}{x_{n}}}$$即$$\frac{n}{\frac{1}{x_{1}} + \frac{1}{x_{2}} + \cdots + \frac{1}{x_{n}}} \leq \sqrt[n]{x_{1} \cdot x_{2} \cdot \cdots \cdot x_{n}}$$得证。

  最后证明$A_{n} \leq Q_{n}$。

  先引入柯西不等式$${\sum\limits_{i = 1}^{n}a_{i}^{2}} \cdot {\sum\limits_{i = 1}^{n}b_{i}^{2}} \geq \left( {\sum\limits_{i = 1}^{n}{a_{i} \cdot b_{i}}} \right)^{2}$$当$\frac{a_{1}}{b_{1}} = \frac{a_{2}}{b_{2}} = \cdots = \frac{a_{n}}{b_{n}}$或$a_{1} = a_{2} = \cdots = a_{n} = 0$或$b_{1} = b_{2} = \cdots = b_{n} = 0$时,取等号。

  归纳法证明柯西不等式。

  当$n = 2$时,$$\begin{align*} \left( {a_{1}^{2} + a_{2}^{2}} \right) \cdot \left( {b_{1}^{2} + b_{2}^{2}} \right) &= a_{1}^{2} \cdot b_{1}^{2} + a_{1}^{2} \cdot b_{2}^{2} + a_{2}^{2} \cdot b_{1}^{2} + a_{2}^{2} \cdot b_{2}^{2} \\ &= a_{1}^{2} \cdot b_{1}^{2} + a_{2}^{2} \cdot b_{1}^{2} + 2 \cdot a_{1}a_{2}b_{1}b_{2} + a_{1}^{2} \cdot b_{2}^{2} + a_{2}^{2} \cdot b_{2}^{2} - 2 \cdot a_{1}a_{2}b_{1}b_{2} \\ &= \left( {a_{1} \cdot b_{1} + a_{2} \cdot b_{2}} \right)^{2} + \left( {a_{1} \cdot b_{2} - a_{2} \cdot b_{1}} \right)^{2} \\ &\geq \left( {a_{1} \cdot b_{1} + a_{2} \cdot b_{2}} \right)^{2} \end{align*}$$成立。

  假设当$n = k$时成立,当$n = k + 1$时,有$$\begin{align*} {\sum\limits_{i = 1}^{k + 1}a_{i}^{2}} \cdot {\sum\limits_{i = 1}^{k + 1}b_{i}^{2}} &= \left( {\left( \sqrt{\sum\limits_{i = 1}^{k}a_{i}^{2}} \right)^{2} + a_{k + 1}^{2}} \right) \cdot \left( {\left( \sqrt{\sum\limits_{i = 1}^{k}b_{i}^{2}} \right)^{2} + b_{k + 1}^{2}} \right) \\ &\geq \left( {\sqrt{{\sum\limits_{i = 1}^{k}a_{i}^{2}} \cdot {\sum\limits_{i = 1}^{k}b_{i}^{2}}} + a_{k + 1} \cdot b_{k + 1}} \right)^{2} \\ &\geq {\sum\limits_{i = 1}^{k}{a_{i} \cdot b_{i}}} + a_{k + 1} \cdot b_{k + 1} \\ &= {\sum\limits_{i = 1}^{k + 1}{a_{i} \cdot b_{i}}} \end{align*}$$得证。

  由柯西不等式$$\begin{align*} \left( {\frac{1}{n} \cdot {\sum\limits_{i = 1}^{n}x_{i}}} \right)^{2} &= \frac{1}{n^{2}}\left( {x_{1} \cdot 1 + x_{2} \cdot 1 + \cdots + x_{n} \cdot 1} \right)^{2} \\ & \leq \frac{1}{n^{2}} \cdot \left( {x_{1}^{2} + x_{2}^{2} + \cdots + x_{n}^{2}} \right) \cdot \left( {1^{2} \cdot 1^{2} \cdot \cdots \cdot 1^{2}} \right) \\ &= \frac{x_{1}^{2} + x_{2}^{2} + \cdots + x_{n}^{2}}{n^{2}} \end{align*}$$

即$$\frac{1}{n} \cdot {\sum\limits_{i = 1}^{n}x_{i}} = \frac{x_{1} + x_{2} + \cdots + x_{n}}{n} \leq \frac{\sqrt{x_{1}^{2} + x_{2}^{2} + \cdots + x_{n}^{2}}}{n}$$得证。

 

参考资料

  【不等式】均值不等式及其应用:https://zhuanlan.zhihu.com/p/33706065

  柯西不等式的几种证明方法:https://zhuanlan.zhihu.com/p/397034475

  均值不等式:https://baike.baidu.com/item/%E5%9D%87%E5%80%BC%E4%B8%8D%E7%AD%89%E5%BC%8F/8046796

标签:right,frac,limits,不等式,cdot,均值,sqrt,证明,cdots
来源: https://www.cnblogs.com/onlyblues/p/15946579.html

本站声明: 1. iCode9 技术分享网(下文简称本站)提供的所有内容,仅供技术学习、探讨和分享;
2. 关于本站的所有留言、评论、转载及引用,纯属内容发起人的个人观点,与本站观点和立场无关;
3. 关于本站的所有言论和文字,纯属内容发起人的个人观点,与本站观点和立场无关;
4. 本站文章均是网友提供,不完全保证技术分享内容的完整性、准确性、时效性、风险性和版权归属;如您发现该文章侵犯了您的权益,可联系我们第一时间进行删除;
5. 本站为非盈利性的个人网站,所有内容不会用来进行牟利,也不会利用任何形式的广告来间接获益,纯粹是为了广大技术爱好者提供技术内容和技术思想的分享性交流网站。

专注分享技术,共同学习,共同进步。侵权联系[81616952@qq.com]

Copyright (C)ICode9.com, All Rights Reserved.

ICode9版权所有