ICode9

精准搜索请尝试: 精确搜索
首页 > 其他分享> 文章详细

Mnist手写体识别实验报告

2021-10-10 11:59:34  阅读:547  来源: 互联网

标签:network images labels 28 test train 手写体 实验报告 Mnist


实验(二)

代码段:

# 实验环境:MindSpore-python3.7-aarch64

import os
# os.environ['DEVICE_ID'] = '0'

import mindspore as ms
import mindspore.context as context
import mindspore.dataset.transforms.c_transforms as C
import mindspore.dataset.vision.c_transforms as CV

from mindspore import nn
from mindspore.train import Model
from mindspore.train.callback import LossMonitor

context.set_context(mode=context.GRAPH_MODE, device_target='Ascend') # Ascend, CPU, GPU

data_train = os.path.join("MNIST", 'train') # train set
data_test = os.path.join("MNIST", 'test') # test set
ds = ms.dataset.MnistDataset(data_train)
print(data_train)

请添加图片描述
以上在华为云上不断报错,而且无法排除错误,于是我参考了网上视频教程,使用keras(基于tensorflow框架)第三方库在本地电脑上运行:

# 准备工作:

pip install keras
pip install tensorflow

第一次代码:

# 实验环境:pycharm, python 3.8
# 框架:tensorflow

from keras.utils import to_categorical
from keras import models, layers, regularizers
from keras.optimizers import RMSprop
from keras.datasets import mnist # 导入数据集
import matplotlib.pyplot as plt

# 加载数据集
(train_images, train_labels), (test_images, test_labels) = mnist.load_data() # 下载数据集
# print(train_images.shape, test_images.shape) # 打印输出形状
# print(train_images[0])
# print(train_labels[0])
# plt.imshow(train_images[0])
# plt.show()

# 将二维数据铺开成一维
train_images = train_images.reshape((60000, 28*28)).astype('float') # 784,输入层有784个神经元
test_images = test_images.reshape((10000, 28*28)).astype('float')
# 标签值编码
train_labels = to_categorical(train_labels)
test_labels = to_categorical(test_labels)
# print(train_labels[0])

# 搭建神经网络
# 输入层28*28个神经元,隐藏层15个神经元,输出层10个神经元(0~9)
network = models.Sequential() # 序列式模型
network.add(layers.Dense(units=15, activation='relu', input_shape=(28*28, ), )) # 隐藏层
# Dense:全连接层
# units:15个神经元
# 激活函数:ReLu(sigmoid和tanh会产生梯度弥散现象,自变量很大时,图像很平缓,梯度下降十分缓慢)
network.add(layers.Dense(units=10, activation='softmax')) # 输出层
# 激活函数选择softmax,输出为概率值

# 训练神经网络
# 编译:确定优化器(学习率/梯度下降步长)和损失函数等
network.compile(optimizer=RMSprop(lr=0.001), loss='categorical_crossentropy', metrics=['accuracy'])
# epochs表示训练多少个回合,batch_size表示每次训练给多大的数据
network.fit(train_images, train_labels, epochs=20, batch_size=128, verbose=2)
# 经过20轮训练,训练集准确率达到80%
# print(network.summary())

# 用模型进行预测
# y_pre = network.predict(test_images[:5])
# print(y_pre, test_labels[:5])
test_loss, test_accuracy = network.evaluate(test_images, test_labels)
print("test_loss: ", test_loss, "          test_accuracy: ", test_accuracy)

加载完数据输出第一张图片预览:
加载数据

对标签值进行编码:
请添加图片描述

神经网络的训练结构:
请添加图片描述

第一次训练集结果:
请添加图片描述

第一次测试集结果:
请添加图片描述

第一次测试输出的结果准确率为89.85%,不过为什么只有313张测试图片?

然后按照教程对模型进行改进:

首先将原来隐藏层的神经元数量增加至128,同时再增加一层神经元数量为32的隐藏层。

第二次代码:

from keras.utils import to_categorical
from keras import models, layers, regularizers
from keras.optimizers import RMSprop
from keras.datasets import mnist # 导入数据集
import matplotlib.pyplot as plt

# 加载数据集
(train_images, train_labels), (test_images, test_labels) = mnist.load_data() # 下载数据集
# print(train_images.shape, test_images.shape) # 打印输出形状
# print(train_images[0])
# print(train_labels[0])
# plt.imshow(train_images[0])
# plt.show()

# 将二维数据铺开成一维
train_images = train_images.reshape((60000, 28*28)).astype('float') # 784,输入层有784个神经元
test_images = test_images.reshape((10000, 28*28)).astype('float')
# 标签值编码
train_labels = to_categorical(train_labels)
test_labels = to_categorical(test_labels)
# print(train_labels[0])

# 搭建神经网络
# 输入层28*28个神经元,隐藏层15个神经元,输出层10个神经元(0~9)
network = models.Sequential() # 序列式模型
network.add(layers.Dense(units=128, activation='relu', input_shape=(28*28, ), )) # 隐藏层
# Dense:全连接层
# units:15个神经元
# 激活函数:ReLu(sigmoid和tanh会产生梯度弥散现象,自变量很大时,图像很平缓,梯度下降十分缓慢)
network.add(layers.Dense(units=32, activation='relu')) # 第二层隐藏层
network.add(layers.Dense(units=10, activation='softmax')) # 输出层
# 激活函数选择softmax,输出为概率值

# 训练神经网络
# 编译:确定优化器(学习率/梯度下降步长)和损失函数等
network.compile(optimizer=RMSprop(lr=0.001), loss='categorical_crossentropy', metrics=['accuracy'])
# epochs表示训练多少个回合,batch_size表示每次训练给多大的数据
network.fit(train_images, train_labels, epochs=20, batch_size=128, verbose=2)
# 经过20轮训练,训练集准确率达到80%
# print(network.summary())

# 用模型进行预测
# y_pre = network.predict(test_images[:5])
# print(y_pre, test_labels[:5])
test_loss, test_accuracy = network.evaluate(test_images, test_labels)
print("test_loss: ", test_loss, "          test_accuracy: ", test_accuracy)

测试结果:
请添加图片描述
相同情况下,训练集准确率提升至97.23%(过拟合),测试集准确率提升至95.91%,同时运行时长也增加了。
为了解决过拟合的问题,在每一层隐藏层都加入正则化和Dropout方法。

第三次代码:

from keras.utils import to_categorical
from keras import models, layers, regularizers
from keras.optimizers import RMSprop
from keras.datasets import mnist # 导入数据集
import matplotlib.pyplot as plt

# 加载数据集
(train_images, train_labels), (test_images, test_labels) = mnist.load_data() # 下载数据集
# print(train_images.shape, test_images.shape) # 打印输出形状
# print(train_images[0])
# print(train_labels[0])
# plt.imshow(train_images[0])
# plt.show()

# 将二维数据铺开成一维
train_images = train_images.reshape((60000, 28*28)).astype('float') # 784,输入层有784个神经元
test_images = test_images.reshape((10000, 28*28)).astype('float')
# 标签值编码
train_labels = to_categorical(train_labels)
test_labels = to_categorical(test_labels)
# print(train_labels[0])

# 搭建神经网络
# 输入层28*28个神经元,隐藏层15个神经元,输出层10个神经元(0~9)
network = models.Sequential() # 序列式模型
network.add(layers.Dense(units=128, activation='relu', input_shape=(28*28, ),
                         kernel_regularizer=regularizers.l1(0.0001))) # 隐藏层
# 正则化消除过拟合问题
# Dense:全连接层
# units:15个神经元
# 激活函数:ReLu(sigmoid和tanh会产生梯度弥散现象,自变量很大时,图像很平缓,梯度下降十分缓慢)
network.add(layers.Dropout(0.01)) # 0.01的概率使神经元丧失功能
network.add(layers.Dense(units=32, activation='relu', 
                         kernel_regularizer=regularizers.l1(0.0001))) # 第二层隐藏层
network.add(layers.Dropout(0.01)) # 0.01的概率使神经元丧失功能
network.add(layers.Dense(units=10, activation='softmax')) # 输出层
# 激活函数选择softmax,输出为概率值

# 训练神经网络
# 编译:确定优化器(学习率/梯度下降步长)和损失函数等
network.compile(optimizer=RMSprop(lr=0.001), loss='categorical_crossentropy', metrics=['accuracy'])
# epochs表示训练多少个回合,batch_size表示每次训练给多大的数据
network.fit(train_images, train_labels, epochs=20, batch_size=128, verbose=2)
# 经过20轮训练,训练集准确率达到80%
# print(network.summary())

# 用模型进行预测
# y_pre = network.predict(test_images[:5])
# print(y_pre, test_labels[:5])
test_loss, test_accuracy = network.evaluate(test_images, test_labels)
print("test_loss: ", test_loss, "          test_accuracy: ", test_accuracy)

现在过拟合现象在大多数情况下消失了:
请添加图片描述
最后再尝试使用简单的卷积神经网络模型:

第四次代码:

from keras.utils import to_categorical
from keras import models, layers, regularizers
from keras.optimizers import RMSprop
from keras.datasets import mnist # 导入数据集
import matplotlib.pyplot as plt

# 加载数据集
(train_images, train_labels), (test_images, test_labels) = mnist.load_data() # 下载数据集
# print(train_images.shape, test_images.shape) # 打印输出形状
# print(train_images[0])
# print(train_labels[0])
# plt.imshow(train_images[0])
# plt.show()

# 将二维数据铺开成一维
# train_images = train_images.reshape((60000, 28*28)).astype('float') # 784,输入层有784个神经元
# test_images = test_images.reshape((10000, 28*28)).astype('float')
# # 标签值编码
# train_labels = to_categorical(train_labels)
# test_labels = to_categorical(test_labels)
# print(train_labels[0])

# # 搭建神经网络
# # 输入层28*28个神经元,隐藏层15个神经元,输出层10个神经元(0~9)
# network = models.Sequential() # 序列式模型
# network.add(layers.Dense(units=128, activation='relu', input_shape=(28*28, ),
#                          kernel_regularizer=regularizers.l1(0.0001))) # 隐藏层
# # 正则化消除过拟合问题
# # Dense:全连接层
# # units:15个神经元
# # 激活函数:ReLu(sigmoid和tanh会产生梯度弥散现象,自变量很大时,图像很平缓,梯度下降十分缓慢)
# network.add(layers.Dropout(0.01)) # 0.01的概率使神经元丧失功能
# network.add(layers.Dense(units=32, activation='relu',
#                          kernel_regularizer=regularizers.l1(0.0001))) # 第二层隐藏层
# network.add(layers.Dropout(0.01)) # 0.01的概率使神经元丧失功能
# network.add(layers.Dense(units=10, activation='softmax')) # 输出层
# # 激活函数选择softmax,输出为概率值

# 尝试使用卷积神经网络
def Lenet():
    network = models.Sequential()
    network.add(layers.Conv2D(filters=6, kernel_size=(3, 3), activation='relu', input_shape=(28, 28, 1)))
    network.add(layers.AveragePooling2D((2, 2)))
    network.add(layers.Conv2D(filters=16, kernel_size=(3, 3), activation='relu'))
    network.add(layers.AveragePooling2D((2, 2)))
    network.add(layers.Conv2D(filters=120, kernel_size=(3, 3), activation='relu'))
    network.add(layers.Flatten())
    network.add(layers.Dense(84, activation='relu'))
    network.add(layers.Dense(10, activation='softmax'))
    return network

network = Lenet()

# 训练神经网络
# 编译:确定优化器(学习率/梯度下降步长)和损失函数等
network.compile(optimizer=RMSprop(lr=0.001), loss='categorical_crossentropy', metrics=['accuracy'])

train_images = train_images.reshape((60000, 28, 28, 1)).astype('float') / 255
test_images = test_images.reshape((10000, 28, 28, 1)).astype('float') / 255
train_labels = to_categorical(train_labels)
test_labels = to_categorical(test_labels)

# epochs表示训练多少个回合,batch_size表示每次训练给多大的数据
network.fit(train_images, train_labels, epochs=10, batch_size=128, verbose=2)
# 经过20轮训练,训练集准确率达到80%
# print(network.summary())

# 用模型进行预测
# y_pre = network.predict(test_images[:5])
# print(y_pre, test_labels[:5])
test_loss, test_accuracy = network.evaluate(test_images, test_labels)
print("test_loss: ", test_loss, "          test_accuracy: ", test_accuracy)

在这个简单的卷积神经网络模型上面,训练回合减少到了一半,而运行时间延长了不少,不过最终的测试结果准确率可以达到约99%:

请添加图片描述

标签:network,images,labels,28,test,train,手写体,实验报告,Mnist
来源: https://blog.csdn.net/weixin_43349479/article/details/120680607

本站声明: 1. iCode9 技术分享网(下文简称本站)提供的所有内容,仅供技术学习、探讨和分享;
2. 关于本站的所有留言、评论、转载及引用,纯属内容发起人的个人观点,与本站观点和立场无关;
3. 关于本站的所有言论和文字,纯属内容发起人的个人观点,与本站观点和立场无关;
4. 本站文章均是网友提供,不完全保证技术分享内容的完整性、准确性、时效性、风险性和版权归属;如您发现该文章侵犯了您的权益,可联系我们第一时间进行删除;
5. 本站为非盈利性的个人网站,所有内容不会用来进行牟利,也不会利用任何形式的广告来间接获益,纯粹是为了广大技术爱好者提供技术内容和技术思想的分享性交流网站。

专注分享技术,共同学习,共同进步。侵权联系[81616952@qq.com]

Copyright (C)ICode9.com, All Rights Reserved.

ICode9版权所有