ICode9

精准搜索请尝试: 精确搜索
首页 > 其他分享> 文章详细

[gym102978C] Count Min Ratio

2021-09-09 21:00:35  阅读:131  来源: 互联网

标签:Count le Ratio sum AB gym102978C Ax binom aligned


[gym102978C] Count Min Ratio

给定 \(B\) 个蓝色的球、 \(R\) 个红色的球以及一个绿色的球,同颜色的球不可区分。对于一种球的排列方式,记 \(l_B,r_B,l_R,r_R\) 表示球左/右变的蓝/红色球个数,则该排列的权值为 \(\max \{x | l_B\times x\le l_R,r_B\times x\le r_R\}\) 。求所有排列的权值和。

\(1\le B\le 10^6,1\le R\le 10^{18}\)

Solution

枚举绿球左边的红蓝球个数:

\[\begin{aligned}&\sum_{b=0}^{B}\sum_{r=0}^{R}\binom{b+r}{b}\binom{(B-b)+(R-r)}{B-b}\min (\frac{r}{b},\frac{R-r}{B-b})\\&=\sum_{A=1}^{R/B}\sum_{b=0}^{B}\sum_{r=0}^{R}\binom{b+r}{b}\binom{(B-b)+(R-r)}{B-b}[bA\le r][(B-b)A\le R-r]\\&=\sum_{A=1}^{R/B}\sum_{b=0}^{B}\sum_{r=0}^{R}\binom{b+r}{b}\binom{(B-b)+(R-r)}{B-b}[r-bA\ge 0][r-bA\le R-AB]\\&=\sum_{A=1}^{R/B}\sum_{P=r-bA=0}^{R-AB}\sum_{b=0}^{B}\binom{b+r}{b}\binom{(B-b)+(R-r)}{B-b}\end{aligned} \]

考虑右式的组合意义:一条路径的权值为从 \((0,0)\) 走到 \(B,R\) ,途径满足 \(y=Ax+P\) 的点数。右式即为所有路径的权值和。

引理 1 :定义 \(f(W,A,P)\) 表示从 \((0,0)\) 到 \((W,AW+P)\) 且不超过 \(y=Ax+P\) 的路径数,则 \(f(W,A,P)=\binom{(A+1)W+P}{W}-A\binom{(A+1)W+P}{W-1}\) 。

证明:

考虑一条从 \((0,0)\) 到 \((W,AW+P)\) 的路径,枚举第一次穿过 \(y=Ax+P\) 的位置:

\[\binom{(A+1)W+P}{W}=f(W,A,P)+\sum_{i=0}^{W-1}f(i,A,P)\binom{A(W-i)+W-i-1}{W-i} \]

考虑一条从 \((0,0)\) 到 \((W-1,AW+P+1)\) 的路径,枚举第一次穿过 \(y=Ax+P\) 的位置:

\[\begin{aligned} \binom{(A+1)W+P}{W-1}&=\sum_{i=0}^{W-1}f(i,A,P)\binom{A(W-i)+W-i-1}{W-i-1}\\ &=\frac{1}{A}\sum_{i=0}^{W-1}f(i,A,P)\binom{A(W-i)+W-i-1}{W-i} \end{aligned} \]

我们惊讶的发现 \(f(W,A,P)=\binom{(A+1)W+P}{W}-A\binom{(A+1)W+P}{W-1}\) 。

在这道题中,把右式要求的问题记为 \(g(B,R,A,P)\) ,注意到 \(AB+P\le AB+R-AB\le R\) ,因此 \(R\) 高于这条线。

引理 2 :\(g(B,R,A,P)\) 与 \(P\) 的取值无关,且 \(g(B,R,A,P)=\sum\limits_{i=0}^{B}\binom{B+R+1}{i}A^{B-i}\) 。

枚举路径上的点,可以得到 \(g(B,R,A,P)=\sum\limits_{i=0}^{B}\binom{(A+1)i+P}{i}\binom{R+B-(A+1)i-P}{B-i}\) 。

于是:

\[\begin{aligned}&g(B,R,A,P)-Ag(B-1,R+1,A,P)\\&=\sum_{i=0}^{B}\binom{(A+1)i+P}{i}\left(\binom{R+B-(A+1)i-P}{B-i}-A\binom{R+B-(A+1)i-P}{B-i-1}\right)\\&=\sum_{i=0}^{B}\binom{(A+1)i+P}{i}f(B-i,A,R-AB-P)\end{aligned} \]

考虑这个式子的组合意义,就是从 \((0,0)\) 走到 \((i,Ai+P)\) ,再沿 \(y=Ax+P\) 及以上的点走到 \((B,R)\) 。

考虑双射,在该路径走到 \((i,Ai+P)\) 时额外往上走一步,即走到 \((i,Ai+P+1)\) 的位置。那么这条路径的含义就变成了枚举最后一次碰到 \(y=Ax+P\) 的位置,并且最终到达 \((B,R+1)\) ,那么方案数显然就是 \(\binom{B+R+1}{B}\) 。

因此,\(g(B,R,A,P)-Ag(B-1,R+1,A,P)=\binom{B+R+1}{B}\) ,它与 \(P\) 的取值无关。

通过递推可以得到 \(g(B,R,A,P)=\sum\limits_{i=0}^{B}\binom{B+R+1}{i}A^{B-i}\) 。

回到原式,那么答案即为:

\[\begin{aligned}&\sum_{A=1}^{R/B}(R-AB+1)g(B,R,A,*)\\&=\sum_{A=1}^{R/B}(R-AB+1)\sum_{i=0}^{B}\binom{B+R+1}{i}A^{B-i}\\&=\sum_{i=0}^{B}\binom{B+R+1}{i}\left((R+1)\sum_{A=1}^{R/B}A^{B-i}-B\sum_{A=1}^{R/B}A^{B-i+1}\right)\end{aligned} \]

对于 \(k\in [1,m]\) ,求 \(\sum\limits_{i=0}^{n-1}i^{k}\) 可以用伯努利数 \(\mathcal O(m\log m)\) 快速计算。

时间复杂度 \(\mathcal O(m\log m)\) 。

标签:Count,le,Ratio,sum,AB,gym102978C,Ax,binom,aligned
来源: https://www.cnblogs.com/wlzhouzhuan/p/15248753.html

本站声明: 1. iCode9 技术分享网(下文简称本站)提供的所有内容,仅供技术学习、探讨和分享;
2. 关于本站的所有留言、评论、转载及引用,纯属内容发起人的个人观点,与本站观点和立场无关;
3. 关于本站的所有言论和文字,纯属内容发起人的个人观点,与本站观点和立场无关;
4. 本站文章均是网友提供,不完全保证技术分享内容的完整性、准确性、时效性、风险性和版权归属;如您发现该文章侵犯了您的权益,可联系我们第一时间进行删除;
5. 本站为非盈利性的个人网站,所有内容不会用来进行牟利,也不会利用任何形式的广告来间接获益,纯粹是为了广大技术爱好者提供技术内容和技术思想的分享性交流网站。

专注分享技术,共同学习,共同进步。侵权联系[81616952@qq.com]

Copyright (C)ICode9.com, All Rights Reserved.

ICode9版权所有