ICode9

精准搜索请尝试: 精确搜索
首页 > 其他分享> 文章详细

内核对设备树的处理

2021-03-26 17:32:01  阅读:162  来源: 互联网

标签:node 处理 bus driver platform 内核 device 节点 设备


内核对设备树的处理 

第01节_从源头分析_内核head.S对dtb的简单处理
第02节_对设备树中平台信息的处理(选择machine_desc)
第03节_对设备树中运行时配置信息的处理
第04节_dtb转换为device_node(unflatten)
第05节_device_node转换为platform_device
第06节_platform_device跟platform_driver的匹配
第07节_内核中设备树的操作函数
第08节_在根文件系统中查看设备树(有助于调试)
Linux uses DT data for three major purposes:

platform identification,
runtime configuration, and
device population.


第01节_从源头分析_内核head.S对dtb的简单处理
bootloader启动内核时,会设置r0,r1,r2三个寄存器,
r0一般设置为0;
r1一般设置为machine id (在使用设备树时该参数没有被使用); 
r2一般设置ATAGS或DTB的开始地址

bootloader给内核传递的参数时有2种方法:
ATAGS 或 DTB

对于ATAGS传参方法, 可以参考我们的"毕业班视频-自己写bootloader"
   从www.100ask.net下载页面打开百度网盘,
   打开如下目录:
        100ask分享的所有文件
            006_u-boot_内核_根文件系统(新1期_2期间的衔接)
                视频
                    第002课_从0写bootloader_更深刻理解bootloader

a. __lookup_processor_type : 使用汇编指令读取CPU ID, 根据该ID找到对应的proc_info_list结构体(里面含有这类CPU的初始化函数、信息)
b. __vet_atags             : 判断是否存在可用的ATAGS或DTB
c. __create_page_tables    : 创建页表, 即创建虚拟地址和物理地址的映射关系
d. __enable_mmu            : 使能MMU, 以后就要使用虚拟地址了
e. __mmap_switched         : 上述函数里将会调用__mmap_switched
f. 把bootloader传入的r2参数, 保存到变量__atags_pointer中
g. 调用C函数start_kernel

head.S/head-common.S  : 
把bootloader传来的r1值, 赋给了C变量: __machine_arch_type
把bootloader传来的r2值, 赋给了C变量: __atags_pointer     // dtb首地址

第02节_对设备树中平台信息的处理(选择machine_desc)
a. 设备树根节点的compatible属性列出了一系列的字符串,
   表示它兼容的单板名,
   从"最兼容"到次之

b. 内核中有多个machine_desc,
   其中有dt_compat成员, 它指向一个字符串数组, 里面表示该machine_desc支持哪些单板

c. 使用compatile属性的值, 
   跟每一个machine_desc.dt_compat比较,
   成绩为"吻合的compatile属性值的位置",
   成绩越低越匹配, 对应的machine_desc即被选中

函数调用过程:
start_kernel // init/main.c
    setup_arch(&command_line);  // arch/arm/kernel/setup.c
        mdesc = setup_machine_fdt(__atags_pointer);  // arch/arm/kernel/devtree.c
                    early_init_dt_verify(phys_to_virt(dt_phys)  // 判断是否有效的dtb, drivers/of/ftd.c
                                    initial_boot_params = params;
                    mdesc = of_flat_dt_match_machine(mdesc_best, arch_get_next_mach);  // 找到最匹配的machine_desc, drivers/of/ftd.c
                                    while ((data = get_next_compat(&compat))) {
                                        score = of_flat_dt_match(dt_root, compat);
                                        if (score > 0 && score < best_score) {
                                            best_data = data;
                                            best_score = score;
                                        }
                                    }
                    
        machine_desc = mdesc;

第03节_对设备树中运行时配置信息的处理
函数调用过程:
start_kernel // init/main.c
    setup_arch(&command_line);  // arch/arm/kernel/setup.c
        mdesc = setup_machine_fdt(__atags_pointer);  // arch/arm/kernel/devtree.c
                    early_init_dt_scan_nodes();      // drivers/of/ftd.c
                        /* Retrieve various information from the /chosen node */
                        of_scan_flat_dt(early_init_dt_scan_chosen, boot_command_line);

                        /* Initialize {size,address}-cells info */
                        of_scan_flat_dt(early_init_dt_scan_root, NULL);

                        /* Setup memory, calling early_init_dt_add_memory_arch */
                        of_scan_flat_dt(early_init_dt_scan_memory, NULL);

/chosen节点中bootargs属性的值, 存入全局变量: boot_command_line
确定根节点的这2个属性的值: #address-cells, #size-cells
存入全局变量: dt_root_addr_cells, dt_root_size_cells
解析/memory中的reg属性, 提取出"base, size", 最终调用memblock_add(base, size);

第04节_dtb转换为device_node(unflatten)
函数调用过程:
start_kernel // init/main.c
    setup_arch(&command_line);  // arch/arm/kernel/setup.c
        arm_memblock_init(mdesc);   // arch/arm/kernel/setup.c
            early_init_fdt_reserve_self();
                    /* Reserve the dtb region */
                    // 把DTB所占区域保留下来, 即调用: memblock_reserve
                    early_init_dt_reserve_memory_arch(__pa(initial_boot_params),
                                      fdt_totalsize(initial_boot_params),
                                      0);           
            early_init_fdt_scan_reserved_mem();  // 根据dtb中的memreserve信息, 调用memblock_reserve
            
        unflatten_device_tree();    // arch/arm/kernel/setup.c
            __unflatten_device_tree(initial_boot_params, NULL, &of_root,
                        early_init_dt_alloc_memory_arch, false);            // drivers/of/fdt.c
                
                /* First pass, scan for size */
                size = unflatten_dt_nodes(blob, NULL, dad, NULL);
                
                /* Allocate memory for the expanded device tree */
                mem = dt_alloc(size + 4, __alignof__(struct device_node));
                
                /* Second pass, do actual unflattening */
                unflatten_dt_nodes(blob, mem, dad, mynodes);
                    populate_node
                        np = unflatten_dt_alloc(mem, sizeof(struct device_node) + allocl,
                                    __alignof__(struct device_node));
                        
                        np->full_name = fn = ((char *)np) + sizeof(*np);
                        
                        populate_properties
                                pp = unflatten_dt_alloc(mem, sizeof(struct property),
                                            __alignof__(struct property));
                            
                                pp->name   = (char *)pname;
                                pp->length = sz;
                                pp->value  = (__be32 *)val;
                                
a. 在DTB文件中, 
   每一个节点都以TAG(FDT_BEGIN_NODE, 0x00000001)开始, 节点内部可以嵌套其他节点,
   每一个属性都以TAG(FDT_PROP, 0x00000003)开始

b. 每一个节点都转换为一个device_node结构体:
        struct device_node {
            const char *name;  // 来自节点中的name属性, 如果没有该属性, 则设为"NULL"
            const char *type;  // 来自节点中的device_type属性, 如果没有该属性, 则设为"NULL"
            phandle phandle;
            const char *full_name;  // 节点的名字, node-name[@unit-address]
            struct fwnode_handle fwnode;

            struct  property *properties;  // 节点的属性
            struct  property *deadprops;    /* removed properties */
            struct  device_node *parent;   // 节点的父亲
            struct  device_node *child;    // 节点的孩子(子节点)
            struct  device_node *sibling;  // 节点的兄弟(同级节点)
        #if defined(CONFIG_OF_KOBJ)
            struct  kobject kobj;
        #endif
            unsigned long _flags;
            void    *data;
        #if defined(CONFIG_SPARC)
            const char *path_component_name;
            unsigned int unique_id;
            struct of_irq_controller *irq_trans;
        #endif
        };

c. device_node结构体中有properties, 用来表示该节点的属性
   每一个属性对应一个property结构体:
        struct property {
            char    *name;    // 属性名字, 指向dtb文件中的字符串
            int length;       // 属性值的长度
            void    *value;   // 属性值, 指向dtb文件中value所在位置, 数据仍以big endian存储
            struct property *next;
        #if defined(CONFIG_OF_DYNAMIC) || defined(CONFIG_SPARC)
            unsigned long _flags;
        #endif
        #if defined(CONFIG_OF_PROMTREE)
            unsigned int unique_id;
        #endif
        #if defined(CONFIG_OF_KOBJ)
            struct bin_attribute attr;
        #endif
        };
   
d. 这些device_node构成一棵树, 根节点为: of_root

第05节_device_node转换为platform_device
dts -> dtb -> device_node -> platform_device

两个问题:
a. 哪些device_node可以转换为platform_device?
根节点下含有compatile属性的子节点
如果一个结点的compatile属性含有这些特殊的值("simple-bus","simple-mfd","isa","arm,amba-bus")之一, 那么它的子结点(需含compatile属性)也可以转换为platform_device
i2c, spi等总线节点下的子节点, 应该交给对应的总线驱动程序来处理, 它们不应该被转换为platform_device

b. 怎么转换?
platform_device中含有resource数组, 它来自device_node的reg, interrupts属性;
platform_device.dev.of_node指向device_node, 可以通过它获得其他属性
 

本节总结:

a. 内核函数of_platform_default_populate_init, 遍历device_node树, 生成platform_device

b. 并非所有的device_node都会转换为platform_device
   只有以下的device_node会转换:
   
    1. 该节点必须含有compatible属性
    2. 根节点的子节点(节点必须含有compatible属性)
    3. 含有特殊compatible属性的节点的子节点(子节点必须含有compatible属性):
        这些特殊的compatilbe属性为: "simple-bus","simple-mfd","isa","arm,amba-bus"
    4. 示例: 
        比如以下的节点, 
        /mytest会被转换为platform_device, 
        因为它兼容"simple-bus", 它的子节点/mytest/mytest@0 也会被转换为platform_device

        /i2c节点一般表示i2c控制器, 它会被转换为platform_device, 在内核中有对应的platform_driver;
        /i2c/at24c02节点不会被转换为platform_device, 它被如何处理完全由父节点的platform_driver决定, 一般是被创建为一个i2c_client。

        类似的也有/spi节点, 它一般也是用来表示SPI控制器, 它会被转换为platform_device, 在内核中有对应的platform_driver;
        /spi/flash@0节点不会被转换为platform_device, 它被如何处理完全由父节点的platform_driver决定, 一般是被创建为一个spi_device。

/ {
      mytest {
          compatile = "mytest", "simple-bus";
          mytest@0 {
                compatile = "mytest_0";
          };
      };
      
      i2c {
          compatile = "samsung,i2c";
          at24c02 {
                compatile = "at24c02";                      
          };
      };

      spi {
          compatile = "samsung,spi";              
          flash@0 {
                compatible = "winbond,w25q32dw";
                spi-max-frequency = <25000000>;
                reg = <0>;
              };
      };
  };

函数调用过程: 
a. of_platform_default_populate_init (drivers/of/platform.c) 被调用到过程:
start_kernel     // init/main.c
    rest_init();
        pid = kernel_thread(kernel_init, NULL, CLONE_FS);
                    kernel_init
                        kernel_init_freeable();
                            do_basic_setup();
                                do_initcalls();
                                    for (level = 0; level < ARRAY_SIZE(initcall_levels) - 1; level++)
                                        do_initcall_level(level);  // 比如 do_initcall_level(3)
                                                                               for (fn = initcall_levels[3]; fn < initcall_levels[3+1]; fn++)
                                                                                    do_one_initcall(initcall_from_entry(fn));  // 就是调用"arch_initcall_sync(fn)"中定义的fn函数

b. of_platform_default_populate_init  (drivers/of/platform.c) 生成platform_device的过程:
of_platform_default_populate_init
    of_platform_default_populate(NULL, NULL, NULL);
        of_platform_populate(NULL, of_default_bus_match_table, NULL, NULL)
            for_each_child_of_node(root, child) {
                rc = of_platform_bus_create(child, matches, lookup, parent, true);  // 调用过程看下面
                            dev = of_device_alloc(np, bus_id, parent);   // 根据device_node节点的属性设置platform_device的resource
                if (rc) {
                    of_node_put(child);
                    break;
                }
            }
            
c. of_platform_bus_create(bus, matches, ...)的调用过程(处理bus节点生成platform_devie, 并决定是否处理它的子节点):
        dev = of_platform_device_create_pdata(bus, bus_id, platform_data, parent);  // 生成bus节点的platform_device结构体
        if (!dev || !of_match_node(matches, bus))  // 如果bus节点的compatile属性不吻合matches成表, 就不处理它的子节点
            return 0;

        for_each_child_of_node(bus, child) {    // 取出每一个子节点
            pr_debug("   create child: %pOF\n", child);
            rc = of_platform_bus_create(child, matches, lookup, &dev->dev, strict);   // 处理它的子节点, of_platform_bus_create是一个递归调用
            if (rc) {
                of_node_put(child);
                break;
            }
        }
        
d. I2C总线节点的处理过程:
   /i2c节点一般表示i2c控制器, 它会被转换为platform_device, 在内核中有对应的platform_driver;
   platform_driver的probe函数中会调用i2c_add_numbered_adapter:
   
   i2c_add_numbered_adapter   // drivers/i2c/i2c-core-base.c
        __i2c_add_numbered_adapter
            i2c_register_adapter
                of_i2c_register_devices(adap);   // drivers/i2c/i2c-core-of.c
                    for_each_available_child_of_node(bus, node) {
                        client = of_i2c_register_device(adap, node);
                                        client = i2c_new_device(adap, &info);   // 设备树中的i2c子节点被转换为i2c_client
                    }
                    
e. SPI总线节点的处理过程:
   /spi节点一般表示spi控制器, 它会被转换为platform_device, 在内核中有对应的platform_driver;
   platform_driver的probe函数中会调用spi_register_master, 即spi_register_controller:
   
   spi_register_controller        // drivers/spi/spi.c
        of_register_spi_devices   // drivers/spi/spi.c
            for_each_available_child_of_node(ctlr->dev.of_node, nc) {
                spi = of_register_spi_device(ctlr, nc);  // 设备树中的spi子节点被转换为spi_device
                                spi = spi_alloc_device(ctlr);
                                rc = of_spi_parse_dt(ctlr, spi, nc);
                                rc = spi_add_device(spi);
            }

第06节_platform_device跟platform_driver的匹配

drivers/base/platform.c

a. 注册 platform_driver 的过程:
platform_driver_register
    __platform_driver_register
        drv->driver.probe = platform_drv_probe;
        driver_register
            bus_add_driver
                klist_add_tail(&priv->knode_bus, &bus->p->klist_drivers);    // 把 platform_driver 放入 platform_bus_type 的driver链表中
                driver_attach
                    bus_for_each_dev(drv->bus, NULL, drv, __driver_attach);  // 对于plarform_bus_type下的每一个设备, 调用__driver_attach
                        __driver_attach
                            ret = driver_match_device(drv, dev);  // 判断dev和drv是否匹配成功
                                        return drv->bus->match ? drv->bus->match(dev, drv) : 1;  // 调用 platform_bus_type.match
                            driver_probe_device(drv, dev);
                                        really_probe
                                            drv->probe  // platform_drv_probe
                                                platform_drv_probe
                                                    struct platform_driver *drv = to_platform_driver(_dev->driver);
                                                    drv->probe
                            
b. 注册 platform_device 的过程:
platform_device_register
    platform_device_add
        device_add
            bus_add_device
                klist_add_tail(&dev->p->knode_bus, &bus->p->klist_devices); // 把 platform_device 放入 platform_bus_type的device链表中
            bus_probe_device(dev);
                device_initial_probe
                    __device_attach
                        ret = bus_for_each_drv(dev->bus, NULL, &data, __device_attach_driver); // // 对于plarform_bus_type下的每一个driver, 调用 __device_attach_driver
                                    __device_attach_driver
                                        ret = driver_match_device(drv, dev);
                                                    return drv->bus->match ? drv->bus->match(dev, drv) : 1;  // 调用platform_bus_type.match
                                        driver_probe_device

匹配函数是platform_bus_type.match, 即platform_match,

匹配过程按优先顺序罗列如下:
a. 比较 platform_dev.driver_override 和 platform_driver.drv->name
b. 比较 platform_dev.dev.of_node的compatible属性 和 platform_driver.drv->of_match_table
c. 比较 platform_dev.name 和 platform_driver.id_table
d. 比较 platform_dev.name 和 platform_driver.drv->name
           有一个成功, 即匹配成功

第07节_内核中设备树的操作函数
include/linux/目录下有很多of开头的头文件:

dtb -> device_node -> platform_device
a. 处理DTB
of_fdt.h           // dtb文件的相关操作函数, 我们一般用不到, 因为dtb文件在内核中已经被转换为device_node树(它更易于使用)

b. 处理device_node
of.h               // 提供设备树的一般处理函数, 比如 of_property_read_u32(读取某个属性的u32值), of_get_child_count(获取某个device_node的子节点数)
of_address.h       // 地址相关的函数, 比如 of_get_address(获得reg属性中的addr, size值)
of_match_device(从matches数组中取出与当前设备最匹配的一项)
of_dma.h           // 设备树中DMA相关属性的函数
of_gpio.h          // GPIO相关的函数
of_graph.h         // GPU相关驱动中用到的函数, 从设备树中获得GPU信息
of_iommu.h         // 很少用到
of_irq.h           // 中断相关的函数
of_mdio.h          // MDIO (Ethernet PHY) API
of_net.h           // OF helpers for network devices. 
of_pci.h           // PCI相关函数
of_pdt.h           // 很少用到
of_reserved_mem.h  // reserved_mem的相关函数

c. 处理 platform_device
of_platform.h      // 把device_node转换为platform_device时用到的函数, 
                   // 比如of_device_alloc(根据device_node分配设置platform_device), 
                   //     of_find_device_by_node (根据device_node查找到platform_device),
                   //     of_platform_bus_probe (处理device_node及它的子节点)
of_device.h        // 设备相关的函数, 比如 of_match_device

第08节_在根文件系统中查看设备树(有助于调试)
a. /sys/firmware/fdt     // 原始dtb文件

     hexdump -C /sys/firmware/fdt

b. /sys/firmware/devicetree // 以目录结构程现的dtb文件, 根节点对应base目录, 每一个节点对应一个目录, 每一个属性对应一个文件

c. /sys/devices/platform // 系统中所有的platform_device, 有来自设备树的, 也有来有.c文件中注册的, 对于来自设备树的platform_device, 可以进入 /sys/devices/platform/<设备名>/of_node 查看它的设备树属性

d. /proc/device-tree 是链接文件, 指向 /sys/firmware/devicetree/base

e. cat /proc/interrupts 查看中断号
 cat /proc/iomem 查看系统的io内存
 cat /proc/ioports 查看端口io资源分布

 

标签:node,处理,bus,driver,platform,内核,device,节点,设备
来源: https://blog.csdn.net/u010783226/article/details/115250809

本站声明: 1. iCode9 技术分享网(下文简称本站)提供的所有内容,仅供技术学习、探讨和分享;
2. 关于本站的所有留言、评论、转载及引用,纯属内容发起人的个人观点,与本站观点和立场无关;
3. 关于本站的所有言论和文字,纯属内容发起人的个人观点,与本站观点和立场无关;
4. 本站文章均是网友提供,不完全保证技术分享内容的完整性、准确性、时效性、风险性和版权归属;如您发现该文章侵犯了您的权益,可联系我们第一时间进行删除;
5. 本站为非盈利性的个人网站,所有内容不会用来进行牟利,也不会利用任何形式的广告来间接获益,纯粹是为了广大技术爱好者提供技术内容和技术思想的分享性交流网站。

专注分享技术,共同学习,共同进步。侵权联系[81616952@qq.com]

Copyright (C)ICode9.com, All Rights Reserved.

ICode9版权所有