ICode9

精准搜索请尝试: 精确搜索
首页 > 其他分享> 文章详细

[深度之眼机器学习训练营第四期]过拟合与正则化

2020-01-23 20:53:39  阅读:212  来源: 互联网

标签:right TA 训练营 拟合 theta 之眼 sum lambda


基本概念

机器学习模型面临的两个主要问题是欠拟合与过拟合。欠拟合,即模型具有较高的偏差,说明模型没有从数据中学到什么,如下左图所示。而过拟合,即模型具有较高的方差,意味着模型的经验误差低而泛化误差高,对新数据的泛化能力差,如下右图所示。
在这里插入图片描述
通常,欠拟合是由于模型过于简单或使用数据集的特征较少导致的。相反,过拟合则是模型过于复杂或特征过多引起的。欠拟合的问题比较容易解决,而过拟合的问题则有些棘手。一般而言,解决过拟合的方法包括降维正则化

正则化损失函数

正则化是通过向损失函数中添加惩罚项以限制参数大小的一种方法。假设我们有如下多项式线性回归模型:
\[ h_\theta(x)\theta_0 + \theta_1x+\theta_2x^2+\theta_3x^3+\theta_4x^4 \]
为了避免模型过于复杂,我们需要削弱\(\theta_3x^3\)和\(\theta_4x^4\)对模型的影响。因此,我们需要对这两项进行“惩罚”,避免它们过大。所以,我们把这两个参数乘以一个较大的系数,加到损失函数中:
\[ \min_{\theta} \frac{1}{2n}\sum_{i=1}^n\left(h_\theta(x^{(i)})-y^{(i)}\right) + 1000 \cdot \theta_3^2+ 1000 \cdot \theta_4^2 \]
这样一来,为了求解损失函数的最小值,式中\(\theta_3\)和\(\theta_4\)的值就不能过大,也就限制了模型的复杂度。如果要限制所有的参数,那么损失函数就是下面这种形式:
\[ \min_{\theta} \frac{1}{2n}\sum_{i=1}^n\left(h_\theta(x^{(i)})-y^{(i)}\right) + \lambda\sum_{j=1}^d\theta_j^2 \]
其中\(\lambda \gt 0\)是正则化参数。下面,我们将正则化应用到之前所学的线性回归和对数几率回归中。

线性回归

梯度下降法

损失函数:
\[ J(\theta) = \frac {1}{2n}\left[ \sum_{i=1}^n \left( h_\theta (x^{(i)}) - y^{(i)} \right)^2 + \lambda\sum_{j=1}^d\theta_j^2\right] \]
今天懒得推导了(其实这个和不带正则化项的推导差不多),直接写更新方程吧:
\[ \begin{aligned} & \text{Repeat}\ \lbrace \\ & \ \ \ \ \theta_0 := \theta_0 - \alpha\ \frac{1}{n}\ \sum_{i=1}^n (h_\theta(x^{(i)}) - y^{(i)})x_0^{(i)} \\ & \ \ \ \ \theta_j := \theta_j - \alpha\ \left[ \left( \frac{1}{n}\ \sum_{i=1}^n (h_\theta(x^{(i)}) - y^{(i)})x_j^{(i)} \right) + \frac{\lambda}{n}\theta_j \right] &\ \ \ \ \ \ \ \ \ \ j \in \lbrace 1,2...d\rbrace\\ & \rbrace \end{aligned} \]

正规方程法

\[ \begin{aligned} & \theta = \left( X^TX + \lambda \cdot L \right)^{-1} X^Ty \text{, where}\ \ L = \begin{bmatrix} 0 & & & & \\ & 1 & & & \\ & & 1 & & \\ & & & \ddots & \\ & & & & 1 \\ \end{bmatrix}_{(d+1)\times(d+1)} \end{aligned} \]
\(X^TX + \lambda \cdot L\)这个东西必定可逆。

首先,因为\(\vec{u}^TA^TA\vec{u}=\|A\vec{u}\|^2 \ge0\),所以\(A^TA\)是半正定矩阵,即\(A^TA\)的所有特征值\(\mu_i\ge 0\)。由\(A^TA\vec{u}=\mu_i \vec{u}\)可以推出\((A^TA+\lambda I)\vec{u}=(\mu_i+\lambda)\vec{u}\),因此\(A^TA+\lambda I\)的特征值为\(\mu_i+\lambda\)。又因为\(\lambda \gt 0\),所以\(\mu_i+\lambda\gt0\)。由于\(A^TA+\lambda I\)的所有特征值都是大于\(0\)的,因此矩阵\(A^TA+\lambda I\)一定可逆。

对数几率回归

损失函数:
\[ J(\theta) = -\frac{1}{n} \sum _{i=1}^n \left[ y^{(i)} \log h_\theta(x^{(i)}) + (1-y^{(i)})\log(1 - h_\theta(x^{(i)})) +\frac{\lambda}{2}\sum_{j=1}^d\theta_j^2\right ] \]
更新方程与线性回归类似,这里就不写了。

标签:right,TA,训练营,拟合,theta,之眼,sum,lambda
来源: https://www.cnblogs.com/littleorange/p/12231342.html

本站声明: 1. iCode9 技术分享网(下文简称本站)提供的所有内容,仅供技术学习、探讨和分享;
2. 关于本站的所有留言、评论、转载及引用,纯属内容发起人的个人观点,与本站观点和立场无关;
3. 关于本站的所有言论和文字,纯属内容发起人的个人观点,与本站观点和立场无关;
4. 本站文章均是网友提供,不完全保证技术分享内容的完整性、准确性、时效性、风险性和版权归属;如您发现该文章侵犯了您的权益,可联系我们第一时间进行删除;
5. 本站为非盈利性的个人网站,所有内容不会用来进行牟利,也不会利用任何形式的广告来间接获益,纯粹是为了广大技术爱好者提供技术内容和技术思想的分享性交流网站。

专注分享技术,共同学习,共同进步。侵权联系[81616952@qq.com]

Copyright (C)ICode9.com, All Rights Reserved.

ICode9版权所有