ICode9

精准搜索请尝试: 精确搜索
首页 > 其他分享> 文章详细

2.2 基本不等式

2022-08-31 11:30:21  阅读:165  来源: 互联网

标签:基本 geq right 不等式 dfrac sqrt 最小值 2.2 left


\({\color{Red}{欢迎到学科网下载资料学习 }}\)
【基础过关系列】2022-2023学年高一数学上学期同步知识点剖析精品讲义(人教A版2019)
\({\color{Red}{ 跟贵哥学数学,so \quad easy!}}\)

必修第一册同步拔高,难度2颗星!

基础知识

基本不等式

若\(a>0\) ,\(b>0\),则 \(a+b \geq 2 \sqrt{a b}\)(当且仅当\(a=b\)时,等号成立).
① \(\dfrac{a+b}{2}\)叫做正数\(a ,b\)的算术平均数, \(\sqrt{a b}\)叫做正数\(a ,b\)的几何平均数.
② 基本不等式的几何证明
image.png
(当点\(D、O\)重合,即\(a=b\)时,取到等号)
③运用基本不等式求解最值时,牢记:一正,二定,三等.
一正指的是\(a>0 ,b>0\);二定指的是ab是个定值,三等指的是不等式中取到等号.
 

【例1】 求函数 \(y=x+\dfrac{1}{x}(x<0)\)的最值.
误解 \(x+\dfrac{1}{x} \geq 2 \sqrt{x \cdot \dfrac{1}{x}}=2\),故最小值是\(2\).
误解分析 误解中套用基本不等式,\(a=x\), \(b=\dfrac{1}{x}\),忽略了\(a>0,b>0\)的前提条件!
正解 \(∵x<0\) ,\(∴-x>0\) , \(-\dfrac{1}{x}>0\), \(\therefore-x+\left(-\dfrac{1}{x}\right) \geq 2 \sqrt{-x \cdot\left(-\dfrac{1}{x}\right)}=2\)(当\(x=-1\)取到等号)
\(\therefore x+\dfrac{1}{x}=-\left(-x-\dfrac{1}{x}\right) \leq-2\),故函数 \(y=x+\dfrac{1}{x}(x<0)\)的最大值为\(-2\),没有最小值.
 

【例2】 求函数 \(y=x+\dfrac{1}{x-1}(x>1)\)的最值.
误解 \(y=x+\dfrac{1}{x-1} \geq 2 \sqrt{x \cdot \dfrac{1}{x-1}}\)
误解分析 套用基本不等式\(a=x\), \(b=\dfrac{1}{x-1}\),满足\(a、b\)均为正数,但是最后求不出最值,因为 \(a b=x \cdot \dfrac{1}{x-1}\)不是一定值.
正解 \(y=x+\dfrac{1}{x-1}=x-1+\dfrac{1}{x-1}+1 \geq 2 \sqrt{(x-1) \cdot \dfrac{1}{x-1}}+1=3\).(当\(x=2\)时取到等号)
(通过凑项得到定值“ \((x-1) \cdot \dfrac{1}{x-1}=1\)”)
故函数 \(y=x+\dfrac{1}{x-1}(x>1)\)的最小值为\(2\),没有最大值.
 

【例3】 求函数 \(y=\dfrac{x^{2}+5}{\sqrt{x^{2}+4}}\)的最值.
误解 \(y=\dfrac{x^{2}+5}{\sqrt{x^{2}+4}}=\dfrac{x^{2}+4+1}{\sqrt{x^{2}+4}}=\sqrt{x^{2}+4}+\dfrac{1}{\sqrt{x^{2}+4}}\)\(\geq 2 \sqrt{\sqrt{x^{2}+4} \cdot \dfrac{1}{\sqrt{x^{2}+4}}}=2\),即最小值为\(2\).
误解分析 在误解中把 \(a=\sqrt{x^{2}+4}, b=\dfrac{1}{\sqrt{x^{2}+4}}\),,满足了“一正二定”,但忽略了能否取到等号?若\(a=b\),则\(\sqrt{x^{2}+4}=\dfrac{1}{\sqrt{x^{2}+4}} \Rightarrow \sqrt{x^{2}+4}=1 \Rightarrow x^{2}=-3\)显然方程无解,即不等式取不到等号,只能说明\(\sqrt{x^{2}+4}+\dfrac{1}{\sqrt{x^{2}+4}}>2\),那它有最小值么?(正解看下文_)
 

基本不等式及其变形

\(\dfrac{2}{\dfrac{1}{a}+\dfrac{1}{b}} \leq \sqrt{a b} \leq \dfrac{a+b}{2} \leq \sqrt{\dfrac{a^{2}+b^{2}}{2}}\)(当且仅当\(a=b\)时等号成立)
(调和均值≤几何均值≤算术均值≤平方均值)
以上不等式把常见的二元关系(倒数和,乘积,和,平方和)联系起来,我们要清楚它们在求最值中的作用.
① \(a+b \geq 2 \sqrt{a b}\),积定求和;
② \(a b \leq\left(\dfrac{a+b}{2}\right)^{2}\),和定求积:
③ \(a^{2}+b^{2} \geq \dfrac{(a+b)^{2}}{2}\) (联系了\(a+b\)与平方和 \(a^2+b^2\))
④ \(a b \leq \dfrac{a^{2}+b^{2}}{2}\) (联系了\(ab\)与平方和 \(a^2+b^2\))
 

【例1】若\(a>0\),\(b>0\),\(ab=4\),求\(a+b\)的最小值.
解析 因为 \(a+b \geq 2 \sqrt{a b}=4\)(当\(a=b=2\)时取到等号),所以\(a+b\)的最小值是\(4\).
 

【例2】若\(a>0\),\(b>0\),\(a+b=4\),求\(ab\)的最大值.
解析 因为 \(a b \leq\left(\dfrac{a+b}{2}\right)^{2}=4\)(当\(a=b=2\)时取到等号),所以\(ab\)的最大值是\(4\).
 

【练1】 若\(ab=2\),求 \(3^{a}+3^{b}\)的最小值.
解析 \(3^{a}+3^{b} \geq 2 \cdot \sqrt{3^{a} \cdot 3^{b}}=2 \cdot \sqrt{3^{a+b}}=2 \times 3=6\)(当 \(a=b=\sqrt{2}\)时取到等号).
 

【练2】 若\(a+2b=2\),求\(ab\)的最大值.
解析 因为 \(a b=\dfrac{1}{2} a \cdot 2 b \leq \dfrac{1}{2} \cdot\left(\dfrac{a+2 b}{2}\right)^{2}=\dfrac{1}{2}\)(当 \(a=1, b=\dfrac{1}{2}\)时取到等号),所以\(ab\)的最大值是 \(\dfrac{1}{2}\).
 

对勾函数

概念 形如 \(y=x+\dfrac{a}{x}(a>0)\)的函数.
图像
image.png
性质
函数图像关于原点对称,
在第一象限中,当 \(0<x<\sqrt{a}\)时,函数递减,当 \(x>\sqrt{a}\)时,函数递增.
与基本不等式的关系
由图很明显得知当\(x>0\)时, \(x=\sqrt{a}\)时取到最小值 \(y_{\min }=2 \sqrt{a}\),
其与基本不等式 \(x+\dfrac{a}{x} \geq 2 \sqrt{x \cdot \dfrac{a}{x}}=2 \sqrt{a}\) ( \(x=\sqrt{a}\)时取到最小值)是一致的.
 

【例】求函数 \(y=\dfrac{x^{2}+5}{\sqrt{x^{2}+4}}\)的最值.
解析\(y=\frac{x^{2}+5}{\sqrt{x^{2}+4}}=\frac{x^{2}+4+1}{\sqrt{x^{2}+4}}=\sqrt{x^{2}+4}+\frac{1}{\sqrt{x^{2}+4}}\),
令 \(t=\sqrt{x^{2}+4}\),则\(t≥2\),
因为对勾函数 \(y=t+\dfrac{1}{t}\)在\([2 ,+∞)\)上单调递增,
当\(t=2\)时,取得最小值 \(\dfrac{5}{2}\).
故 \(y=\dfrac{x^{2}+5}{\sqrt{x^{2}+4}}\)的最小值为\(\dfrac{5}{2}\),无最大值.
 

【练】求函数 \(y=x+\dfrac{4}{x}, \quad\left(\dfrac{1}{2} \leq x \leq 4\right)\)的最大值与最小值.
解析 函数 \(y=x+\dfrac{4}{x}\)是对勾函数,由其图象可知,当 \(x=\dfrac{1}{2}\)时取到最大值 \(\dfrac{17}{2}\),当\(x=2\)时取到最小值\(4\).
 

基本方法

基本不等式常见的解题方法

方法1 直接法

【典题1】 下列命题正确的是(  )
 A.函数 \(y=x+\dfrac{1}{x}\)最小值为\(2\)
 B.若\(a ,b∈R\)且\(ab>0\),则 \(\dfrac{b}{a}+\dfrac{a}{b} \geq 2\)
 C.函数\(\sqrt{x^{2}+2}+\dfrac{1}{\sqrt{x^{2}+2}}\)的最小值为\(2\)
 D.函数\(y=2-3 x-\dfrac{4}{x}\)的最小值为 \(2-4 \sqrt{3}\)
解析 \(A\)错误,当\(x<0\)时或\(≠1\)时不成立;\(B\)正确,
因为\(ab>0\),所以 \(\dfrac{b}{a}>0, \dfrac{a}{b}>0\),且 \(\dfrac{b}{a}+\dfrac{a}{b} \geq 2\);\(C\)错误,
若运用基本不等式,需 \(\sqrt{x^{2}+2^{2}}=1, \quad x^{2}=-1\)无实数解;\(D\)错误,
\(y=2-\left(3 x+\dfrac{4}{x}\right) \leq 2-4 \sqrt{3}\)
答案:\(B\)
点拨 注意理解使用基本不等式 \(a+b \geq 2 \sqrt{a b}\)的六字真言“一正二定三等”.
 

巩固练习

1.已知\(x>0 ,y>0\),且 \(\dfrac{1}{x}+\dfrac{9}{y}=1\),则\(xy\)的最小值为\(\underline{\quad \quad}\).
 

2.下列命题中正确的是(  )
 A.若\(a,b∈R\),则 \(\dfrac{b}{a}+\dfrac{a}{b} \geq 2 \sqrt{\dfrac{b}{a} \cdot \dfrac{a}{b}}=2\)
 B.若\(x>0\),则 \(x+\dfrac{1}{x}>2\)
 C.若\(x<0\),则 \(x+\dfrac{4}{x} \geq-2 \sqrt{x \cdot \dfrac{4}{x}}=-4\)
 D.若\(x∈R\),则 \(2^{x}+2^{-x} \geq 2 \sqrt{2^{x} \cdot 2^{-x}}=2\)
 

参考答案

  1. 答案 \(36\)
    解析 \(∵x>0 ,y>0\),且 \(\dfrac{1}{x}+\dfrac{9}{y}=1\),
    由基本不等式可得 \(1 \geq 2 \sqrt{\dfrac{9}{x y}}\),当且仅当 \(\dfrac{1}{x}=\dfrac{9}{y}=\dfrac{1}{2}\)即\(x=2,y=18\)时取等号,
    解可得\(xy≥36\),即\(xy\)的最小值\(36\).
  2. 答案 \(D\)
    解析 \(A\)选项必须保证\(a,b\),同号.\(B\)选项应取到等号,若\(x>0\),则\(x+\dfrac{1}{x} \geq 2\),\(C\)选项应该为\(≤\),故选:\(D\).

方法2 凑项法

【典题1】 函数 \(y=2 x+\dfrac{2}{x-1}(x>1)\)的最小值是(  )
 A.\(2\) \(\qquad \qquad\) B.\(4\) \(\qquad \qquad\) C.\(6\) \(\qquad \qquad\) D.\(8\)
解析 因为 \(y=2 x+\dfrac{2}{x-1}(x>1)=2(x-1)+\dfrac{2}{x-1}+2\)\(\geq 2 \sqrt{2(x-1) \cdot \dfrac{2}{x-1}}+2=6\),
当且仅当 \(2(x-1)=\dfrac{2}{x-1}\)即\(x=2\)时取等号,此时取得最小值\(6\).
故选:\(C\).
点拨 本题不能直接使用基本不等式,因为 \(2 x \times \dfrac{2}{x-1}\)不是定值,故通过凑项,得到 \(2(x-1) \cdot \dfrac{2}{x-1}=4\)定值.

巩固练习

1.若\(x>0\),则函数 \(y=x+\dfrac{1}{2 x+1}\)的最小值为(  )
 A.\(\sqrt{2}+\dfrac{1}{2}\) \(\qquad \qquad\) B.\(\sqrt{2}-\dfrac{1}{2}\) \(\qquad \qquad\) C.\(\sqrt{2}+1\) \(\qquad \qquad\) D.\(\sqrt{2}-1\)
 

2.若\(a ,b>0\),\(ab+2a+b=4\),则\(a+b\)的最小值为(  )
 A.\(2\) \(\qquad \qquad\) B. \(\sqrt{6}-1\) \(\qquad \qquad\) C. \(2 \sqrt{6}-2\) \(\qquad \qquad\) D. \(2 \sqrt{6}-3\)
 

参考答案

  1. 答案 \(B\)
    解析 \(x>0\),函数 \(y=x+\dfrac{1}{2 x+1}=\left(x+\dfrac{1}{2}\right)+\left(\dfrac{\dfrac{1}{2}}{x+\dfrac{1}{2}}\right)-\dfrac{1}{2} \geq 2 \sqrt{\dfrac{1}{2}}-\dfrac{1}{2}=\sqrt{2}-\dfrac{1}{2}\),
    当且仅当 \(x=\dfrac{\sqrt{2}-1}{2}\)时取等号.
    \(∴\)函数 \(y=x+\dfrac{1}{2 x+1}\)的最小值为 \(\sqrt{2}-\dfrac{1}{2}\).故选:\(B\).
  2. 答案 \(D\)
    解析 \(∵a ,b=R^*\) ,\(ab+2a+b=4\),\(∴b(a+1)=4-2a\),
    \(\therefore b=\dfrac{4-2 a}{a+1}=-\dfrac{2 a-4}{a+1}=-\dfrac{2(a+1)-6}{a+1}=-2+\dfrac{6}{a+1}\),
    \(\therefore a+b=a-2+\dfrac{6}{a+1}=a+1+\dfrac{6}{a+1}-3\)
    \(∵a>0 ,b>0\), \(\therefore a+b \geq 2 \sqrt{(a+1) \cdot \dfrac{6}{a+1}}-3=2 \sqrt{6}-3\)
    当且仅当 \(a+1=\dfrac{6}{a+1}\)即 \(a=\sqrt{6}-1\)时″\(=\)″,故选:\(D\).

方法3 凑系数法

【典题1】 当\(0<x<4\)时,则\(y=x(8-2x)\)的最大值为\(\underline{\quad \quad}\).
解析 \(y=x(8-2 x)=\dfrac{1}{2}[2 x \cdot(8-2 x)] \leq \dfrac{1}{2}\left(\dfrac{2 x+8-2 x}{2}\right)^{2}=8\)
当\(2x=8-2x\),即\(x=2\)时取等号 当\(x=2\)时,\(y=x(8-2x)\)的最大值为\(8\).
点拨 ① \(a+b \geq 2 \sqrt{a b}\),积定求和;② \(a b \leq\left(\dfrac{a+b}{2}\right)^{2}\),和定求积;
本题使用不等式②,为了使得\(a+b\)是定值,需要凑系数,使得\(2x+8-2x=2\)为定值.当然本题也可以用二次函数求最值.

巩固练习

1.设 \(0<x<\dfrac{3}{2}\),则函数\(y=4x(3-2x)\)的最大值为\(\underline{\quad \quad}\).
 

2.已知\(a ,b\)为正数, \(4a^2+b^2=7\),则 \(a \sqrt{1+b^{2}}\)的最大值为\(\underline{\quad \quad}\).
 

参考答案

  1. 答案 \(A\)
    解析 \(\because 0<x<\dfrac{3}{2}\),\(∴3-2x>0\),
    \(\therefore y=4 x(3-2 x)=2 \cdot 2 x(3-2 x) \leq 2\left(\dfrac{2 x+3-2 x}{2}\right)^{2}=\dfrac{9}{2}\),
    当且仅当\(2x=3-2x\)即 \(x=\dfrac{3}{4} \in\left(0, \dfrac{3}{2}\right)\)时等号成立.
  2. 答案 \(2\)
    解析 因为 \(4a^2+b^2=7\),
    则 \(a \sqrt{1+b^{2}}=\dfrac{1}{2}(2 a) \sqrt{1+b^{2}}=\dfrac{1}{2} \sqrt{4 a^{2}\left(1+b^{2}\right)}\)\(\leq \dfrac{1}{2} \times \dfrac{4 a^{2}+1+b^{2}}{2}=2\),
    当且仅当 \(4a^2=1+b^2\)时,取得最大值.

方法4 巧“1”法

【典题1】 若正数\(x ,y\)满足 \(\dfrac{3}{x}+\dfrac{1}{y}=5\),则\(3x+4y\)的最小值是\(\underline{\quad \quad}\).
解析 \(\because \dfrac{3}{x}+\dfrac{1}{y}=5\), \(\therefore \dfrac{1}{5}(3 x+4 y)=1\),
\(\therefore 3 x+4 y=(3 x+4 y) \times 1=\dfrac{1}{5}(3 x+4 y)\left(\dfrac{3}{x}+\dfrac{1}{y}\right)\)
\(=\dfrac{1}{5}\left(9+4+\dfrac{12 y}{x}+\dfrac{3 x}{y}\right) \geq \dfrac{1}{5}(13+2 \sqrt{36})=5\),当且仅当 \(\dfrac{12 y}{x}=\dfrac{3 x}{y}\)时等号成立.
点拨 本题巧妙得利用\(3x+4y=(3x+4y)×1\)得到" \(\dfrac{12 y}{x}+\dfrac{3 x}{y}\)"这符合使用基本不等式的“模型”.
 

巩固练习

1.已知\(a>0 ,b>0\)且\(a+b=1\),则 \(\dfrac{1}{a}+\dfrac{2}{b}\)的最小值为\(\underline{\quad \quad}\).
 

2.若\(a>0 ,b>0\)且\(a+b=4\),则下列不等式恒成立的是 ( )
 A. \(\dfrac{1}{a b} \leq \dfrac{1}{4}\) \(\qquad \qquad\) B. \(\dfrac{1}{a}+\dfrac{1}{b} \leq 1\) \(\qquad \qquad\) C. \(\sqrt{a b} \geq 2\) \(\qquad \qquad\) D. \(a^2+b^2≥8\)
 

参考答案

  1. 答案 \(3+2 \sqrt{2}\)
    解析 \(∵a+b=1\),
    \(\therefore \dfrac{1}{a}+\dfrac{2}{b}=(a+b)\left(\dfrac{1}{a}+\dfrac{2}{b}\right)=3+\dfrac{b}{a}+\dfrac{2 a}{b}\)\(\geq 3+2 \sqrt{\dfrac{b}{a} \cdot \dfrac{2 a}{b}}=3+2 \sqrt{2}\),
    当且仅当 \(\dfrac{b}{a}=\dfrac{a}{b}\),即 \(a=b=\dfrac{1}{2}\)时,取等号.
  2. 答案 \(D\)
    解析 方法一:取特殊值排除法
    令\(a=1 ,b=3\),经过检验\(ABC\)项都错,\(D\)对,故选\(D\).
    方法二:\(∵a+b=4\), \(\therefore 4=a+b \geq 2 \sqrt{a b} \Rightarrow \sqrt{a b} \leq 2\),所以\(C\)错;
    \(\sqrt{a b} \leq 2 \Rightarrow a b \leq 4 \Rightarrow \dfrac{1}{a b} \geq \dfrac{1}{4}\),所以\(A\)错;
    \(\dfrac{1}{a}+\dfrac{1}{b}=\left(\dfrac{1}{a}+\dfrac{1}{b}\right) \times 1=\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\left(\dfrac{a+b}{4}\right)\)\(=\dfrac{1}{4}\left(2+\dfrac{b}{a}+\dfrac{a}{b}\right) \geq \dfrac{1}{4}(2+2)=1\),所以\(B\)错;
    \(a^2+b^2≥2ab≥8\),所以\(D\)对.

方法5 换元法

【典题1】 已知\(x>2\),则函数 \(y=\dfrac{x^{2}-4 x+8}{x-2}\)的最小值是\(\underline{\quad \quad}\).
解析 \(y=\dfrac{x^{2}-4 x+8}{x-2}=\dfrac{(x-2)^{2}+4}{x-2}=(x-2)+\dfrac{4}{x-2}\),
\(∵x>2 ,∴x-2>0\),
\(\therefore y=(x-2)+\dfrac{4}{x-2} \geq 2 \sqrt{(x-2) \dfrac{4}{x-2}}=2 \sqrt{4}=4\),
当且仅当 \(x-2=\dfrac{4}{x-2}\),即\(x=4\)时取等号,
故最小值为\(4\).
点拨 该题型属于形如 \(y=\dfrac{a x^{2}+b x+c}{d x^{2}+e x+f}\)的最值问题,常用换元法与基本不等式处理.
 

巩固练习

1.若\(x>1\),则 \(y=\dfrac{x-1}{x^{2}+x-1}\)的最大值为(  )
 A. \(\dfrac{1}{6}\) \(\qquad \qquad\) B. \(\dfrac{1}{4}\) \(\qquad \qquad\) C. \(\dfrac{1}{5}\) \(\qquad \qquad\) D. \(\dfrac{1}{3}\)
 

2.若\(a ,b∈R^*\),\(a+b=1\),求 \(\sqrt{a+\dfrac{1}{2}}+\sqrt{b+\dfrac{1}{2}}\)的最大值.
 

参考答案

  1. 答案 \(C\)
    解析 令\(t=x-1\),则\(x=t+1\),\(t>0\),
    原式 \(=\dfrac{t}{(t+1)^{2}+(t+1)-1}=\dfrac{t}{t^{2}+3 t+1}=\dfrac{1}{t+\dfrac{1}{t}+3}\)\(\leq \dfrac{1}{\sqrt[2]{t \cdot \dfrac{1}{t}+3}}=\dfrac{1}{5}\),
    当且仅当\(t=1\)即\(x=2\)时等号成立,
    故选:\(C\).
  2. 答案 \(2\)
    解析 设 \(s=\sqrt{a+\dfrac{1}{2}}\) , \(t=\sqrt{b+\dfrac{1}{2}}\),则 \(a=s^{2}-\dfrac{1}{2}\) , \(b=t^{2}-\dfrac{1}{2}\),
    \(∵a+b=1\) \(\therefore s^{2}+t^{2}=2\)
    \(\therefore \dfrac{s+t}{2} \leq \sqrt{\dfrac{s^{2}+t^{2}}{2}}=1 \Rightarrow s+t \leq 2\),即 \(\sqrt{a+\dfrac{1}{2}}+\sqrt{b+\dfrac{1}{2}} \leq 2\).

分层练习

【A组---基础题】

1.已知\(a ,b\)为实数,且\(a⋅b≠0\),则下列命题错误的是 ( )
 A.若\(a>0 ,b>0\),则 \(\dfrac{a+b}{2} \geq \sqrt{a b}\)   
 B.若 \(\dfrac{a+b}{2} \geq \sqrt{a b}\),则\(a>0 ,b>0\)
 C.若\(a≠b\),则 \(\dfrac{a+b}{2}>\sqrt{a b}\)      
 D.若 \(\dfrac{a+b}{2}>\sqrt{a b}\),则\(a≠b\)
 

2.已知\(a≥0\) ,\(b≥0\),且\(a+b=2\),则( )
 A. \(a b \leq \dfrac{1}{2}\) \(\qquad \qquad\) B. \(a b \geq \dfrac{1}{2}\) \(\qquad \qquad\) C. \(a^2+b^2≥2\) \(\qquad \qquad\) D. \(a^2+b^2≤3\)
 

3.(多选)设\(a>0\),\(b>0\),且\(a+2b=4\),则下列结论正确的是(  )
 A. \(\dfrac{1}{a}+\dfrac{1}{b}\)的最小值为 \(\sqrt{2}\)
 B. \(\dfrac{2}{a}+\dfrac{1}{b}\)的最小值为\(2\)
 C. \(\dfrac{1}{a}+\dfrac{2}{b}\)的最小值为 \(\dfrac{9}{4}\)
 D. \(\dfrac{b}{a+1}+\dfrac{a}{b+1}>\dfrac{8}{7}\)恒成立
 

4.已知\(a ,b∈R\),如果\(ab=1\),那么\(a+b\)的最小值为\(\underline{\quad \quad}\);如果\(a+b=1\),那么\(ab\)的最大值为\(\underline{\quad \quad}\).
 

5.若实数\(a, b\) 满足 \(\dfrac{1}{a}+\dfrac{2}{b}=\sqrt{a b}\),则\(ab\)的最小值为\(\underline{\quad \quad}\).
 

6.已知\(x,y∈R^+\),若\(x+y+xy=8\),则\(xy\)的最大值为\(\underline{\quad \quad}\).
 

7.已知\(x>2\),则 \(y=x+\dfrac{1}{x-2}\)的最小值是\(\underline{\quad \quad}\).
 

8.若\(0<2x<3\),则\((3-2x)x\)的最大值为\(\underline{\quad \quad}\) .
 

9.若正实数\(a ,b\),满足\(a+b=1\),则 \(\dfrac{b}{3 a}+\dfrac{3}{b}\)的最小值为 .
 

10.设\(x>-1\),求 \(y=\dfrac{(x+5)(x+2)}{x+1}\)的最小值.
 
 

参考答案

  1. 答案 \(C\)
  2. 答案 \(C\)
    解析 由\(a≥0\) ,\(b≥0\),且\(a+b=2\)
    \(∴4=(a+b)^2=a^2+b^2+2ab≤2(a^2+b^2 )\),当且仅当\(a=b=1\)时等号成立
    \(∴a^2+b^2≥2\).
  3. 答案 \(BC\)
    解析 因为\(a>0,b>0\),且\(a+2b=4\),
    对于\(A\), \(\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)(a+2 b)=\dfrac{1}{4}\left(3+\dfrac{2 b}{a}+\dfrac{a}{b}\right) \geq \dfrac{1}{4}(3+2 \sqrt{2})\),
    当且仅当 \(a=4 \sqrt{2}-4, b=4-2 \sqrt{2}\)时取等号,故选项\(A\)错误;
    对于\(B\), \(\dfrac{2}{a}+\dfrac{1}{b}=\dfrac{1}{4}\left(\dfrac{2}{a}+\dfrac{1}{b}\right)(a+2 b)=\dfrac{1}{4}\left(4+\dfrac{4 b}{a}+\dfrac{a}{b}\right) \geq \dfrac{1}{4}(4+4)=2\),
    当且仅当\(a=2 ,b=1\)时取等号,故选项\(B\)正确;
    对于\(C\), \(\dfrac{1}{a}+\dfrac{2}{b}=\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{2}{b}\right)(a+2 b)=\dfrac{1}{4}\left(5+\dfrac{2 b}{a}+\dfrac{2 a}{b}\right)=\dfrac{1}{4}(5+4)=\dfrac{9}{4}\),
    当且仅当\(a=\dfrac{4}{3}, b=\dfrac{4}{3}\)时取等号,故选项\(C\)正确;
    对于\(D\),当 \(a=\dfrac{4}{3}, b=\dfrac{4}{3}\)时,\(a+2b=4\),但 \(\dfrac{b}{a+1}+\dfrac{a}{b+1}=\dfrac{\dfrac{4}{3}}{\dfrac{4}{3}+1}+\dfrac{\dfrac{4}{3}}{\dfrac{4}{3}+1}=\dfrac{8}{7}\),故选项\(D\)错误.
    故选:\(BC\).
  4. 答案 \(2, \dfrac{1}{4}\)
    解析 因为\(a ,b∈R\),所以 \(\dfrac{a+b}{2} \geq \sqrt{a b}\),
    所以 \(a+b \geq 2 \sqrt{a b}=2\).
    故当\(ab=1\)时,\(a+b\)取最小值\(2\),此时\(a=b=1\).
    又当\(a+b=1\)时, \(\sqrt{a b} \leq \dfrac{a+b}{2}=\dfrac{1}{2}\).所以 \(a b \leq \dfrac{1}{4}\).
  5. 答案 \(2 \sqrt{2}\)
    解析 由题易知\(a>0 ,b>0\),
    \(\because \dfrac{1}{a}+\dfrac{2}{b} \geq 2 \sqrt{\dfrac{2}{a b}}\),当 \(\dfrac{1}{a}=\dfrac{2}{b}\),即\(b=2a\)时取到等号,
    \(\therefore \sqrt{a b} \geq 2 \sqrt{\dfrac{2}{a b}} \Rightarrow a b \geq 2 \sqrt{2}\).
    由 \(\left\{\begin{array}{c} b=2 a \\ \dfrac{1}{a}+\dfrac{2}{b}=\sqrt{a b} \end{array}\right.\),解得 \(a=2^{\dfrac{1}{4}}, b=2^{\dfrac{5}{4}}\),
    即当 \(a=2^{\dfrac{1}{4}}, b=2^{\dfrac{5}{4}}\)时,\(ab\)取到最小值 \(2 \sqrt{2}\).
  6. 答案 \(4\)
    解析 \(∵\)正数\(x,y\)满足\(x+y+xy=8\),
    \(\therefore 8-x y=x+y \geq 2 \sqrt{x y}\), \(x y+2 \sqrt{x y}-8 \leq 0\),
    解得 \(0<\sqrt{x y} \leq 2\),
    故\(xy≤4\),当且仅当\(x=y=2\)时取等号.
    \(∴xy\)的最大值为\(4\).
  7. 答案 \(4\)
    解析 \(∵x>2 ,∴x-2>0\),
    \(\therefore y=x+\dfrac{1}{x-2}=x-2+\dfrac{1}{x-2}+2 \geq 2+2=4\)(当 \(x-2=\dfrac{1}{x-2}\),即\(x=3\)时取到等号).
    \(\therefore y=x+\dfrac{1}{x-2}\)的最小值是\(4\).
  8. 答案 \(\dfrac{9}{8}\)
    解析 \(∵0<2x<3\),\(∴3-2x>0,x>0\),
    \(\therefore(3-2 x) x=\dfrac{1}{2}(3-2 x) \cdot 2 x \leq \dfrac{1}{2}\left(\dfrac{3-2 x+2 x}{2}\right)^{2}=\dfrac{9}{8}\),
    当且仅当\(3-2x=2x\),即 \(x=\dfrac{3}{4}\)时取等号,
    \(∴(3-2x)x\)的最大值为 \(\dfrac{9}{8}\).
  9. 答案 \(5\)
    解析 根据题意,若正实数\(a,b\),满足\(a+b=1\),
    则 \(\dfrac{b}{3 a}+\dfrac{3}{b}=\dfrac{b}{3 a}+\dfrac{3 a+3 b}{b}=\dfrac{b}{3 a}+\dfrac{3 a}{b}+3\)\(\geq 2 \times \sqrt{\dfrac{b}{3 a} \times \dfrac{3 a}{b}}+3=5\),
    当且仅当 \(b=3 a=\dfrac{3}{4}\)时等号成立,
    即 \(\dfrac{b}{3 a}+\dfrac{3}{b}\)的最小值为\(5\).
  10. 答案 \(9\)
    解析, 设\(x+1=t>0\),则\(x=t-1\),
    于是有\(y=\dfrac{(t+4)(t+1)}{t}=\dfrac{t^{2}+5 t+4}{t}=t+\dfrac{4}{t}+5 \geq 2 \sqrt{t \cdot \dfrac{4}{t}}+5=9\)
    当且仅当 \(t=\dfrac{4}{t}\),即\(t=2\)时取等号,此时\(x=1\).
    \(∴\)当\(x=1\)时,函数取得最小值是\(9\).

【B组---提高题】

1.(多选)下列说法正确的是(  )
 A. \(x+\dfrac{1}{x}(x>0)\)的最小值是\(2\)
 B. \(\dfrac{x^{2}+2}{\sqrt{x^{2}+2}}\)的最小值是 \(\sqrt{2}\)
 C. \(\dfrac{x^{2}+5}{\sqrt{x^{2}+4}}\)的最小值是\(2\)
 D. \(2-3 x-\dfrac{4}{x}\)的最大值是 \(2-4 \sqrt{3}\)
 

2.若实数\(m,n>0\),满足\(2m+n=1\),以下选项中正确的有(  )
 A.\(mn\)的最小值为 \(\dfrac{1}{8}\)
 B. \(\dfrac{1}{m}+\dfrac{1}{n}\)的最小值为 \(4 \sqrt{2}\)
 C. \(\dfrac{2}{m+1}+\dfrac{9}{n+2}\)的最小值为\(5\)
 D. \(4m^2+n^2\)的最小值为 \(\dfrac{1}{2}\)
 

3.当\(x >1\)时,不等式 \(x+\dfrac{1}{x-1} \geq a\)恒成立,则实数a的最大值为\(\underline{\quad \quad}\).
 

4.已知\(ab>0\),\(a+b=5\),则 \(\dfrac{2}{a+1}+\dfrac{1}{b+1}\)的最小值为\(\underline{\quad \quad}\).
 

5.若实数\(x ,y\)满足 \(x^2+y^2+xy=1\),则\(x+y\)的最大值\(\underline{\quad \quad}\) .
 

6.已知正实数\(a,b\)满足\(a+b=1\),则 \(\dfrac{a^{2}+4}{a}+\dfrac{b^{2}+1}{b}\)的最小值为\(\underline{\quad \quad}\).
 

7.已知正实数\(x,y\)满足\(x+y=1\),则 \(\dfrac{y}{x}+\dfrac{2}{x y}\)的最小值为\(\underline{\quad \quad}\).
 

8.已知正实数\(a ,b\)满足:\(a+b=1\),则 \(\dfrac{2 a}{a^{2}+b}+\dfrac{b}{a+b^{2}}\)的最大值是\(\underline{\quad \quad}\) .
 

参考答案

  1. 答案 \(AB\)
    解析 由基本不等式可知,\(x>0\)时, \(x+\dfrac{1}{x} \geq 2\),当且仅当 \(x=\dfrac{1}{x}\)即\(x=1\)时取等号,故\(A\)正确;
    \(B\): \(\dfrac{x^{2}+2}{\sqrt{x^{2}+2}}=\sqrt{x^{2}+2} \geq \sqrt{2}\),当\(x=0\)时取得等号,故\(B\)正确;
    \(C\): \(\dfrac{x^{2}+5}{\sqrt{x^{2}+4}}=\sqrt{x^{2}+4}+\dfrac{1}{\sqrt{x^{2}+4}}\),令 \(t=\sqrt{x^{2}+4}\),则\(t≥2\),
    因为 \(y=t+\dfrac{1}{t}\)在\([2 ,+∞)\)上单调递增,当\(t=2\)时,取得最小值 \(\dfrac{5}{2}\),故\(C\)错误;
    \(D\): \(2-\left(3 x+\dfrac{4}{x}\right)\)在\(x<0\)时,没有最大值,故\(D\)错误.
    故选:\(AB\).
  2. 答案 \(D\)
    解析 \(∵\)实数\(m,n>0\), \(\therefore 2 m+n=1 \geq 2 \sqrt{2 m n}\),
    整理得 \(m n \leq \dfrac{1}{8}\),当且仅当 \(\left\{\begin{array}{l} n=\dfrac{1}{2} \\ m=\dfrac{1}{4} \end{array}\right.\)时取“\(=\)“,故选项\(A\)错误;
    \(\because \dfrac{1}{m}+\dfrac{1}{n}=(2 m+n)\left(\dfrac{1}{m}+\dfrac{1}{n}\right)=3+\dfrac{n}{m}+\dfrac{2 m}{n} \geq 3+2 \sqrt{2}\),
    当且仅当 \(\left\{\begin{array}{l} m=\dfrac{2-\sqrt{2}}{2} \\ n=\sqrt{2}-1 \end{array}\right.\)时取“\(=\)“,故选项\(B\)错误;
    \(∵2m+n=1\),\(∴2(m+1)+(n+2)=5\),
    \(\therefore \dfrac{2}{m+1}+\dfrac{9}{n+2}=\dfrac{1}{5}[2(m+1)+(n+2)]\left(\dfrac{2}{m+1}+\dfrac{9}{n+2}\right)\)
    \(=\dfrac{1}{5}\left[13+\dfrac{2(n+2)}{m+1}+\dfrac{18(m+1)}{n+2}\right] \geq \dfrac{1}{5}(13+2 \sqrt{36})=5\),当且仅当 \(\left\{\begin{array}{l} m=0 \\ n=1 \end{array}\right.\)时取“\(=\)“,
    \(\therefore \dfrac{2}{m+1}+\dfrac{9}{n+2}>5\),故选项\(C\)错误;
    \(∵2m+n=1\),
    \(\therefore 1=(2 m+n)^{2}=4 m^{2}+n^{2}+4 m n=4 m^{2}+n^{2}+2 \sqrt{4 m^{2}} \cdot \sqrt{n^{2}} \leq 2\left(4 m^{2}+n^{2}\right)\),
    \(\therefore 4 m^{2}+n^{2} \geq \dfrac{1}{2}\),当且仅当 \(\left\{\begin{array}{l} n=\dfrac{1}{2} \\ m=\dfrac{1}{4} \end{array}\right.\)时取“\(=\)“,故选项\(D\)正确,
    故选:\(D\).
  3. 答案 \(3\)
    解析 \(x+\dfrac{1}{x-1} \geq a\)恒成立 \(\Leftrightarrow\left(x+\dfrac{1}{x-1}\right)_{\min } \geq a\),
    因为\(x >1\),即\(x-1 >0\),
    所以 \(x+\dfrac{1}{x-1}=x-1+\dfrac{1}{x-1}+1 \geq 2 \sqrt{(x-1) \cdot \dfrac{1}{x-1}}+1=3\),
    当且仅当 \(x-1=\dfrac{1}{x-1}\),即\(x=2\)时,等号成立.
    所以\(a≤3\),即\(a\)的最大值为\(3\).
  4. 答案 \(\dfrac{3+2 \sqrt{2}}{7}\)
    解析 \(∵ab>0,a+b=5\)知\(a>0 ,b>0\),
    又\(a+1+b+1=7\), \(\therefore \dfrac{1}{7}(a+1+b+1)=1\),
    而 \(\dfrac{2}{a+1}+\dfrac{1}{b+1}=\dfrac{1}{7}(a+1+b+1)\left(\dfrac{2}{a+1}+\dfrac{1}{b+1}\right)\)\(=\dfrac{1}{7}\left(3+\dfrac{2(b+1)}{a+1}+\dfrac{a+1}{b+1}\right) \geq \dfrac{1}{7}(3+2 \sqrt{2})\),
    经检验等号成立,故填 \(\dfrac{3+2 \sqrt{2}}{7}\).
  5. 答案 \(\dfrac{2 \sqrt{3}}{3}\)
    解析 \(\because(x+y)^{2}=x^{2}+y^{2}+2 x y=1-x y+2 x y=1+x y\),
    \(\therefore(x+y)^{2}-1=x y\),\(\because x y \leq \dfrac{(x+y)^{2}}{4}\),
    \(\therefore(x+y)^{2}-1 \leq \dfrac{(x+y)^{2}}{4}\),解得 \((x+y)^{2} \leq \dfrac{4}{3}\),
    \(\therefore-\dfrac{2 \sqrt{3}}{3} \leq x+y \leq \dfrac{2 \sqrt{3}}{3}\),则\(x+y\)的最大值为 \(\dfrac{2 \sqrt{3}}{3}\).
  6. 答案 \(10\)
    解析 由 \(\dfrac{a^{2}+4}{a}+\dfrac{b^{2}+1}{b}=a+b+\dfrac{4}{a}+\dfrac{1}{b}=1+\dfrac{4}{a}+\dfrac{1}{b}\)
    \(∵a+b=1\),
    \(\therefore \dfrac{4}{a}+\dfrac{1}{b}=\left(\dfrac{4}{a}+\dfrac{1}{b}\right)(a+b)=5+\dfrac{4 b}{a}+\dfrac{a}{b} \geq 2 \sqrt{\dfrac{4 b}{a} \times \dfrac{a}{b}}+5=9\),
    当且仅当 \(b=\dfrac{1}{3}, \quad a=\dfrac{2}{3}\)时取等号.
    \(\therefore \dfrac{a^{2}+4}{a}+\dfrac{b^{2}+1}{b}\)的最小值为\(9+1=10\).
  7. 答案 \(4+2 \sqrt{6}\)
    解析 \(∵\)正实数\(x ,y\)满足\(x+y=1\),
    \(∴y=1-x,x∈(0 ,1)\),
    \(\therefore \dfrac{y}{x}+\dfrac{2}{x y}=\dfrac{1-x}{x}+\dfrac{2}{x(1-x)}=-1+\dfrac{1}{x}+\dfrac{2}{x(1-x)}=-1+\dfrac{3-x}{x(1-x)}\),
    令\(t=3-x∈(2 ,3)\),
    则 \(\dfrac{y}{x}+\dfrac{2}{x y}=-1+\dfrac{t}{(3-t)(t-2)}=-1+\dfrac{t}{-t^{2}-6+5 t}=-1+\dfrac{1}{5-\left(t+\dfrac{6}{t}\right)}\)\(\geq-1+\dfrac{1}{5-2 \sqrt{t \cdot \dfrac{6}{t}}}=-1+5+2 \sqrt{6}=4+2 \sqrt{6}\),
    当且仅当 \(t=\sqrt{6}\)时取“\(=\)”.
  8. 答案 \(\dfrac{2 \sqrt{3}+3}{3}\)
    解析 \(\dfrac{2 a}{a^{2}+b}+\dfrac{b}{a+b^{2}}=\dfrac{2 a}{a^{2}+1-a}+\dfrac{1-a}{a+(1-a)^{2}}=\dfrac{a+1}{a^{2}-a+1}\),
    由题意得,\(0<a<1\),令\(a+1=t∈(1 ,2)\),
    \(\therefore \dfrac{a+1}{a^{2}-a+1}=\dfrac{t}{(t-1)^{2}-(t-1)+1}=\dfrac{1}{t+\dfrac{3}{t}-3}\)\(\leq \dfrac{1}{2 \sqrt{3}-3}=\dfrac{2 \sqrt{3}+3}{3}\),
    当且仅当 \(t=\sqrt{3} \Rightarrow a=\sqrt{3}-1, b=2-\sqrt{3}\)时,等号成立,
    即所求最大值为 \(\dfrac{2 \sqrt{3}+3}{3}\).

【C组---拓展题】

1.设\(x>0、y>0、z>0\),则三个数 \(\dfrac{1}{x}+4 y, \dfrac{1}{y}+4 z, \dfrac{1}{z}+4 x\)(  )
 A.都大于\(4\) \(\qquad \qquad\) B.至少有一个大于\(4\) \(\qquad \qquad\) C.至少有一个不小于\(4\) \(\qquad \qquad\) D.至少有一个不大于\(4\)
 

2.已知\(a>b>c\),若 \(\dfrac{1}{a-b}+\dfrac{4}{b-c} \geq \dfrac{m}{a-c}\)恒成立,则\(m\)的最大值为(  )
  A.\(3\) \(\qquad \qquad\) B.\(4\) \(\qquad \qquad\) C.\(8\) \(\qquad \qquad\) D.\(9\)
 

3.设实数\(x,y\)满足 \(\dfrac{x^{2}}{4}-y^{2}=1\),则\(3x^2-2xy\)的最小值是\(\underline{\quad \quad}\).
 

4.设\(a ,b ,c\)均为正数,且\(a+b+c=1\).证明:
(1) \(a b+b c+a c \leq \dfrac{1}{3}\); (2) \(\dfrac{a^{2}}{b}+\dfrac{b^{2}}{c}+\dfrac{c^{2}}{a} \geq 1\).
 

参考答案

  1. 答案 \(C\)
    解析 假设三个数 \(\dfrac{1}{x}+4 y<4\)且 \(\dfrac{1}{y}+4 z<4\)且 \(\dfrac{1}{z}+4 x<4\),
    相加得: \(\dfrac{1}{x}+4 x+\dfrac{1}{y}+4 y+\dfrac{1}{z}+4 z<12\),
    由基本不等式得: \(\dfrac{1}{x}+4 x \geq 4 ; \quad \dfrac{1}{y}+4 y \geq 4 ; \dfrac{1}{z}+4 z \geq 4\);
    相加得: \(\dfrac{1}{x}+4 x+\dfrac{1}{y}+4 y+\dfrac{1}{z}+4 z \geq 12\),与假设矛盾;
    所以假设不成立,三个数 \(\dfrac{1}{x}+4 y, \dfrac{1}{y}+4 z, \dfrac{1}{z}+4 x\)至少有一个不小于\(4\).
    故选:\(C\).

  2. 答案 \(D\)
    解析 由\(a>b>c\),知\(a-b>0,b-c>0,a-c>0\),
    由 \(\dfrac{1}{a-b}+\dfrac{4}{b-c} \geq \dfrac{m}{a-c}\),得 \(m \leq(a-c)\left(\dfrac{1}{a-b}+\dfrac{4}{b-c}\right)\),
    又\(∵a-c=a-b+b-c\),
    \(\left.\therefore(a-c)\left(\dfrac{1}{a-b}+\dfrac{4}{b-c}\right)=[(a-b)+(b-c)]\left(\dfrac{1}{a-b}+\dfrac{4}{b-c}\right)\right]\)
    \(=5+\dfrac{4(a-b)}{b-c}+\dfrac{b-c}{a-b} \geq 5+2 \sqrt{\dfrac{4(a-b)}{b-c} \cdot \dfrac{b-c}{a-b}}=9\),当且仅当 \(\dfrac{4(a-b)}{b-c}=\dfrac{b-c}{a-b}\),
    即\(b-c=2(a-b)\)时, \(\left.(a-c)\left(\dfrac{1}{a-b}+\dfrac{4}{b-c}\right)\right]\)取得最小值\(9\),
    \(∴m≤9\),\(∴m\)的最大值为\(9\).
    故选:\(D\).

  3. 答案 \(6+4 \sqrt{2}\)
    解析方法1 \(3 x^{2}-2 x y=\dfrac{3 x^{2}-2 x y}{\dfrac{x^{2}}{4}-y^{2}}=\dfrac{3-\dfrac{2 y}{x}}{\dfrac{1}{4}-\left(\dfrac{y}{x}\right)^{2}}\)
    令 \(t=\dfrac{y}{x}\), \(\because \dfrac{x^{2}}{4}-y^{2}=1\)
    \(\therefore \dfrac{x^{2}}{4}-t^{2} x^{2}=1 \Rightarrow t^{2}=\dfrac{1}{4}-\dfrac{1}{x^{2}}<\dfrac{1}{4} \Rightarrow-\dfrac{1}{2}<t<\dfrac{1}{2}\),
    则 \(3 x^{2}-2 x y=\dfrac{3-2 t}{\dfrac{1}{4}-t^{2}}\)
    再令\(u=3-2t (2<u<4)\)
    则 \(\dfrac{3}{x^{2}}-2 x y=\dfrac{u}{\dfrac{1}{4}-\left(\dfrac{3-u}{2}\right)^{2}}=\dfrac{4 u}{-u^{2}+6 u-8}=\dfrac{4}{-\left(u+\dfrac{8}{u}\right)+6}\)\(\geq \dfrac{4}{-4 \sqrt{2}+6}=6+4 \sqrt{2}\)
    当且仅当 \(u=2 \sqrt{2}\)时取到等号,
    方法2 \(\because \dfrac{x^{2}}{4}-y^{2}=1\) \(\therefore\left(\dfrac{x}{2}-y\right)\left(\dfrac{x}{2}+y\right)=1\)
    令 \(t=\dfrac{x}{2}+y\),则 \(\dfrac{x}{2}-y=\dfrac{1}{t}\),
    \(\therefore x=t+\dfrac{1}{t}, y=\dfrac{1}{2}\left(t-\dfrac{1}{t}\right)\)
    \(\therefore 3 x^{2}-2 x y=3\left(t+\dfrac{1}{t}\right)^{2}-2\left(t+\dfrac{1}{t}\right)\left(t-\dfrac{1}{t}\right)\)\(=2 t^{2}+\dfrac{4}{t^{2}}+6 \geq 4 \sqrt{2}+6=6+4 \sqrt{2}\)
    当且仅当 \(t^{2}=\sqrt{2}\)时取到等号.

  4. 证明 :(1)由 \(a^2+b^2≥2ab ,b^2+c^2≥2bc ,c^2+a^2≥2ca\).
    得 \(a^2+b^2+c^2≥ab+bc+ca\).
    由题设得\((a+b+c)^2=1\),
    即 \(a^2+b^2+c^2+2ab+2bc+2ca=1\).
    所以 \(3(ab+bc+ca)≤1\),
    即 \(a b+b c+c a \leq \dfrac{1}{3}\).
    (2)因为 \(\dfrac{a^{2}}{b}+b \geq 2 a, \dfrac{b^{2}}{c}+c \geq 2 b, \dfrac{c^{2}}{a}+a \geq 2 c\),
    故 \(\dfrac{a^{2}}{b}+\dfrac{b^{2}}{c}+\dfrac{c^{2}}{a}+(a+b+c) \geq 2(a+b+c)\),
    即 \(\dfrac{a^{2}}{b}+\dfrac{b^{2}}{c}+\dfrac{c^{2}}{a} \geq a+b+c\),
    所以 \(\dfrac{a^{2}}{b}+\dfrac{b^{2}}{c}+\dfrac{c^{2}}{a} \geq 1\).

标签:基本,geq,right,不等式,dfrac,sqrt,最小值,2.2,left
来源: https://www.cnblogs.com/zhgmaths/p/16642421.html

本站声明: 1. iCode9 技术分享网(下文简称本站)提供的所有内容,仅供技术学习、探讨和分享;
2. 关于本站的所有留言、评论、转载及引用,纯属内容发起人的个人观点,与本站观点和立场无关;
3. 关于本站的所有言论和文字,纯属内容发起人的个人观点,与本站观点和立场无关;
4. 本站文章均是网友提供,不完全保证技术分享内容的完整性、准确性、时效性、风险性和版权归属;如您发现该文章侵犯了您的权益,可联系我们第一时间进行删除;
5. 本站为非盈利性的个人网站,所有内容不会用来进行牟利,也不会利用任何形式的广告来间接获益,纯粹是为了广大技术爱好者提供技术内容和技术思想的分享性交流网站。

专注分享技术,共同学习,共同进步。侵权联系[81616952@qq.com]

Copyright (C)ICode9.com, All Rights Reserved.

ICode9版权所有