ICode9

精准搜索请尝试: 精确搜索
首页 > 其他分享> 文章详细

论文解读(PPNP)《Predict then Propagate: Graph Neural Networks meet Personalized PageRank》

2022-08-04 21:36:01  阅读:201  来源: 互联网

标签:right mathbf Neural Predict Graph boldsymbol quad tilde alpha


论文信息

论文标题:Predict then Propagate: Graph Neural Networks meet Personalized PageRank
论文作者:Johannes Gasteiger, Aleksandar Bojchevski, Stephan Günnemann
论文来源:2019,ICLR
论文地址:download
论文代码:download

1-Abstract

  本文主要将 PageRank 算法引入到 GNNs ,提出了  PPNP 模型 和APPNP 模型。 

2-Introduction

  问题:

    • 增大邻域范围,充分利用领域信息;【传播多层——消息传递机制的本质,也可以看做随机游走】
    • 解决过平滑问题(一般均为传播多层造成的过平滑);

  受 带重启随机游走(random walk)的影响,本文利用 personalized PageRank 代替随机游走 ,来增加传送到根节点的机会,以避免过平滑现象(主要是更多的考虑根节点的邻域),此外该模型允许使用更多的传播层数。【通过 $\text{Eq.4}$ 便于理解】

3 Graph convolutional networks and their limited range

  半监督节点分类 GCN:

    $\boldsymbol{Z}_{\mathrm{GCN}}=\operatorname{softmax}\left(\hat{\tilde{\tilde{A}}} \operatorname{ReLU}\left(\hat{\tilde{\tilde{A}}} \boldsymbol{X} \boldsymbol{W}_{0}\right) \boldsymbol{W}_{1}\right)  \quad\quad\quad(1)$

  其中,$\hat{\tilde{\boldsymbol{A}}}=\tilde{\boldsymbol{D}}^{-1 / 2} \tilde{\boldsymbol{A}} \tilde{\boldsymbol{D}}^{-1 / 2}$。

  存在的问题:【APPNP 所解决的问题 】

    • 不能使用更多的传播层,因为会造成过平滑;
    • 层数增加,参数量增加;

4 Personalized propagation of neural predictions

From message passing to personalized PageRank

  早起版本 PageRank:

    $\pi_{\mathrm{pr}}=A_{\mathrm{rw}} \pi_{\mathrm{pr}}, \quad\quad\text { with }\quad\quad A_{\mathrm{rw}}=A D^{-1}$

  以及考虑根节点信息,提出 personalized PageRank 算法:【类似带重启的随机游走,缓解过平滑】

    $\boldsymbol{\pi}_{\mathrm{ppr}}\left(\boldsymbol{i}_{x}\right)=(1-\alpha) \hat{\tilde{A}} \boldsymbol{\pi}_{\mathrm{ppr}}\left(\boldsymbol{i}_{x}\right)+\alpha \boldsymbol{i}_{x}$

  其中:

    • $\hat{\tilde{A}}=\tilde{\boldsymbol{D}}^{-1 / 2} \tilde{\boldsymbol{A}} \tilde{\boldsymbol{D}}^{-1 / 2}$;
    • $i_x$ 表示初始根节点的特征;

  计算得到平稳状态后的分布:

    $\pi_{\mathrm{ppr}}\left(\boldsymbol{i}_{x}\right)=\alpha\left(\boldsymbol{I}_{n}-(1-\alpha) \hat{\tilde{ A}}\right)^{-1} \boldsymbol{i}_{x}$

  用单位矩阵代替指标向量 $i_x$ 得  personalized PageRank matrix:

    $\mathbf{\Pi}_{\mathrm{ppr}}=\alpha\left(\boldsymbol{I}_{n}-(1-\alpha) \hat{\tilde{ A }}\right)^{-1}$

  $\mathbf{\Pi}_{\mathrm{ppr}}$ 中的元素 $yx$ 可以理解为 节点 $x$ 对节点 $y$ 的影响分数 $I(x, y) \propto \Pi_{\mathrm{ppr}}^{(y x)}$。【其实就是 节点 $x$ 转移到节点 $y$ 的概率值】

  Note:上述式子可逆的时候需要满足  $\frac{1}{1-\alpha}>1$ 且不能为 $\hat{\tilde{A}}$ 的特征值。

  借由上述阐述,得到 PPNP 模型:

    $\boldsymbol{Z}_{\mathrm{PPNP}}=\operatorname{softmax}\left(\alpha\left(\boldsymbol{I}_{n}-(1-\alpha) \hat{\tilde{ A }}\right)^{-1} \boldsymbol{H}\right), \quad \boldsymbol{H}_{i,:}=f_{\theta}\left(\boldsymbol{X}_{i,:}\right)\quad\quad\quad(3)$

  Note:直接计算  $\Pi_{\mathrm{ppr}}$ ,具有高计算复杂度且需要 $\mathcal{O}\left(n^{2}\right)$ 的内存空间。【APPNP 改进的地方】

Approximate personalized propagation of neural predictions (APPNP)

  APPNP 通过幂次迭代逼近 topic-sensitive PageRank 来实现线性计算复杂度。传播过程为:

    $\begin{array}{l}\boldsymbol{Z}^{(0)} &=&\boldsymbol{H}=f_{\theta}(\boldsymbol{X}) \\\boldsymbol{Z}^{(k+1)} &=&(1-\alpha) \hat{\tilde{A}} \boldsymbol{Z}^{(k)}+\alpha \boldsymbol{H} \\\boldsymbol{Z}^{(K)} &=&\operatorname{softmax}\left((1-\alpha) \hat{\tilde{\boldsymbol{A}}} \boldsymbol{Z}^{(K-1)}+\alpha \boldsymbol{H}\right)\end{array}\quad\quad\quad(4)$

  这个迭代方案的收敛性证明如下:

  

  在 PPNP 和 APPNP 中,影响每个节点的邻域的大小都可以通过传送概率 $\alpha $ 进行调整。

附:图扩散

  $\mathcal{T}_{\mathbf{A}}(\mathbf{A})=\sum_{k=0}^{\infty} \Theta_{k} \mathbf{S}^{k}$

其中:

  • $\mathbf{S} \in \mathbb{R}^{N \times N}$  是广泛的转移矩阵 
  • $\Theta$  是加权系数,且  $\sum_{k=0}^{\infty} \Theta_{k}=1 , \Theta_{k} \in[0,1]$

Personalized PageRank (PPR) kernal

  其中:

    • $\mathbf{S}=\mathbf{D}^{-1 / 2} \mathbf{A D}^{-1 / 2}$
    • $\Theta_{k}=\alpha(1-\alpha)^{k}$

  得:

    • $\mathcal{T}_{\mathbf{A}}^{P P R}(\mathbf{A})=\alpha\left(\mathbf{I}_{n}-(1-\alpha) \mathbf{D}^{-1 / 2} \mathbf{A} \mathbf{D}^{-1 / 2}\right)^{-1}$  

5 Experimental setup

  消息传递算法对 数据划分 和 权重初始化 都非常敏感。

Overall accuracy

  

不同模型在随机数据划分 和 随机权重初始化的标准差

  

Training time per epoch

  

Training set size

  

6 Conclusion

  在本文中,我们介绍了神经预测(PPNP)及其快速近似APPNP。我们通过考虑GCN和PageRank之间的关系并将其扩展到个性化PageRank来导这个模型。这个简单的模型解耦了预测和传播,并解决了许多消息传递模型中固有的有限范围的问题,而没有引入任何额外的参数。它使用来自一个大的、可调节的(通过传送概率 $\alpha$)邻域的信息来对每个节点进行分类。该模型在计算上高效,优于目前最先进的研究,在多个图上的半监督分类方法。

 

标签:right,mathbf,Neural,Predict,Graph,boldsymbol,quad,tilde,alpha
来源: https://www.cnblogs.com/BlairGrowing/p/16543260.html

本站声明: 1. iCode9 技术分享网(下文简称本站)提供的所有内容,仅供技术学习、探讨和分享;
2. 关于本站的所有留言、评论、转载及引用,纯属内容发起人的个人观点,与本站观点和立场无关;
3. 关于本站的所有言论和文字,纯属内容发起人的个人观点,与本站观点和立场无关;
4. 本站文章均是网友提供,不完全保证技术分享内容的完整性、准确性、时效性、风险性和版权归属;如您发现该文章侵犯了您的权益,可联系我们第一时间进行删除;
5. 本站为非盈利性的个人网站,所有内容不会用来进行牟利,也不会利用任何形式的广告来间接获益,纯粹是为了广大技术爱好者提供技术内容和技术思想的分享性交流网站。

专注分享技术,共同学习,共同进步。侵权联系[81616952@qq.com]

Copyright (C)ICode9.com, All Rights Reserved.

ICode9版权所有