ICode9

精准搜索请尝试: 精确搜索
首页 > 其他分享> 文章详细

每日一题20220411 | 分布函数、函数序列收敛、点态收敛、一致收敛、依概率收敛

2022-04-13 21:35:09  阅读:241  来源: 互联网

标签:infty right frac 函数 点态 epsilon xi 收敛 left


Question 1

\(\{F_n(x),n\geq1\}\) is a sequence of c.d.f.'s and \(F_n(x)\rightarrow F(x)\) for each \(x\in(-\infty,\infty)\), where \(F(x)\) is a continuous c.d.f.. Prove that \(\sup\limits_{x\in\{-\infty,\infty\}}|F_n(x)-F(x)|\rightarrow0\), as \(n\rightarrow\infty\), i.e. \(\{F_n(x)\}\) converge to \(F(x)\) uniformly for all \(x\in(-\infty,\infty)\).

证明:分布函数序列的点态收敛到一个连续的分布函数,则可以推出一致收敛。

Proof 1

For any \(\epsilon>0\), we first can always find a large enough positive constant \(M(\epsilon)>0\), such that \(1-F(x)<\epsilon/2,\forall x>M\) and \(F(x)<\epsilon/2,\forall x<-M\),since \(F(x):(-\infty,\infty)\rightarrow[0,1]\) is a continuous c.d.f..

We know \(F(x)\) is uniformly continuous in the close interval \([-M,M]\), so we can find \(k(\epsilon)\in \mathbb{N}^+\) large enough (then \(M/(k-1)\) is small enough for \(\epsilon\)), and let \(x_i=-M+\frac{2M}{k-1}(i-1),i=1,\ldots,k\) be points of division of \([-M,M]\), such that \(F(x_{i+1})-F(x_i)<\epsilon/2,1\leq i<k\). In addition, we denote \(x_0:=-\infty\) and \(x_{k+1}:=\infty\), then

\[F(x_{i+1})-F(x_i)<\epsilon/2,\quad 0\leq i< k+1. \]

For each \(x_i\), since \(F_n(x_i){\rightarrow}F(x_i),n\rightarrow\infty\), we have \(\exist N(\epsilon)>0,\forall n>N\),

\[|F_n(x_i)-F(x_i)|<\epsilon/2,\quad 0\leq i\leq k+1. \]

Now \(\forall x\in(-\infty,\infty)\), \(\exist i\in\{0,\ldots,k\}\), s.t. \(x\in(x_i,x_{i+1}]\), we have

\[F(x_i)-\epsilon/2<F_n(x_i)\leq F_n(x)\leq F(x_{i+1})<F(x_{i+1})+\epsilon/2, \]

where the middle two inequalities are from the non-decreasing property of c.d.f. \(F_n(x)\). And then, continuously by this property, we have

\[F_n(x)-F(x)<F(x_{i+1})+\epsilon/2-F(x)\leq F(x_{i+1})-F(x_i)+\epsilon/2<\epsilon;\\ F_n(x)-F(x)>F(x_i)-\epsilon/2-F(x)\geq F(x_i)-F(x_{i+1})-\epsilon/2>-\epsilon. \]

In conclusion, \(\forall\epsilon>0,\exist N(\epsilon)>0\), s.t. \(\forall n>N,\forall x\in(-\infty,\infty),|F_n(x)-F(x)|<\epsilon\), which completes the proof.

Question 2

\(\{F_n(x),n\geq1\}\) is a sequence of c.d.f.'s and \(F_n(x)\rightarrow F(x)\) for each \(x\in(-\infty,\infty)\), where both \(F_n(x)\) and \(F(x)\) are continuous and strict increasing c.d.f.'s. Assume \(\xi\sim U(0,1)\), show that \(F_n^{-1}(\xi)\stackrel{P}{\rightarrow}F^{-1}(\xi)\).

证明:连续分布函数序列的点态收敛可以推出相应的分位数随机变量序列的依概率收敛。

Proof 2

We want to show that for any \(\epsilon>0,\delta>0\), \(\exist N(\epsilon,\delta)>0\), s.t. \(\forall n>N\), \(P(|F_n^{-1}(\xi)-F^{-1}(\xi)|\leq\delta)\geq1-\epsilon\), then by the arbitrariness of \(\epsilon\) and \(\delta\), we have \(F_n^{-1}(\xi)\stackrel{P}{\rightarrow}F^{-1}(\xi)\), as \(n\rightarrow\infty\).

\(\forall \epsilon>0,\delta>0\), first we can find \(M(\delta)>0\) large enough, s.t. \(F(M)-F(-M)>1-\epsilon/2\), and then for fixed \(M\), we can find \(k(\delta)>0,m(\delta)>0\), s.t. \(1/k<\delta,m/k>M\), for fixed \(m\), we can further find \(h(\epsilon,\delta)>0\), s.t. \(h<\epsilon/[4(2m+1)]\).

Since \(\sup_x|F_n(x)-F(x)|\rightarrow0\), as \(n\rightarrow\infty\), uniformly for all \(x\in(-\infty,\infty)\), \(\exist N(\epsilon,\delta)>0\), s.t. \(\forall n>N\),

\[|F_n(x)-F(x)|<h,\quad \forall x\in(-\infty,\infty). \]

Then

\[\begin{align*} P(|F_n^{-1}(\xi)-F^{-1}(\xi)|\leq\delta)&\geq P\left(|F_n^{-1}(\xi)-F^{-1}(\xi)|\leq\frac{1}{k}\right)\\ &\geq P\left\{\sum_{i=-m}^m\left[\left(|F_n^{-1}(\xi)-\frac{i}{k}|\leq\frac{1}{2k}\right)\cap\left(|F^{-1}(\xi)-\frac{i}{k}|\leq\frac{1}{2k}\right)\right]\right\}\\&=\sum_{i=-m}^mP\left\{\left[F_n\left(\frac{i}{k}-\frac{1}{2k}\right)\leq\xi\leq F_n\left(\frac{i}{k}+\frac{1}{2k}\right)\right]\cap\left[F\left(\frac{i}{k}-\frac{1}{2k}\right)\leq\xi\leq F\left(\frac{i}{k}+\frac{1}{2k}\right)\right]\right\}\\&=\sum_{i=-m}^mP\left(\max\left(F_n\left(\frac{i}{k}-\frac{1}{2k}\right),F\left(\frac{i}{k}-\frac{1}{2k}\right)\right)\leq\xi\leq \min\left(F_n\left(\frac{i}{k}+\frac{1}{2k}\right),F\left(\frac{i}{k}+\frac{1}{2k}\right)\right)\right)\\&\geq\sum_{i=-m}^mP\left(F\left(\frac{i}{k}-\frac{1}{2k}\right)+h\leq\xi\leq F\left(\frac{i}{k}+\frac{1}{2k}\right)-h\right)\\&=\sum_{i=-m}^m\left[F\left(\frac{i}{k}+\frac{1}{2k}\right)-F\left(\frac{i}{k}-\frac{1}{2k}\right)-2h\right]\\&=F\left(\frac{m}{k}+\frac{1}{2k}\right)-F\left(-\frac{m}{k}-\frac{1}{2k}\right)-2(2m+1)h\\&>1-\epsilon/2-\epsilon/2=1-\epsilon,\quad \forall n>N, \end{align*} \]

which completes the proof.

标签:infty,right,frac,函数,点态,epsilon,xi,收敛,left
来源: https://www.cnblogs.com/yecheng97/p/16142132.html

本站声明: 1. iCode9 技术分享网(下文简称本站)提供的所有内容,仅供技术学习、探讨和分享;
2. 关于本站的所有留言、评论、转载及引用,纯属内容发起人的个人观点,与本站观点和立场无关;
3. 关于本站的所有言论和文字,纯属内容发起人的个人观点,与本站观点和立场无关;
4. 本站文章均是网友提供,不完全保证技术分享内容的完整性、准确性、时效性、风险性和版权归属;如您发现该文章侵犯了您的权益,可联系我们第一时间进行删除;
5. 本站为非盈利性的个人网站,所有内容不会用来进行牟利,也不会利用任何形式的广告来间接获益,纯粹是为了广大技术爱好者提供技术内容和技术思想的分享性交流网站。

专注分享技术,共同学习,共同进步。侵权联系[81616952@qq.com]

Copyright (C)ICode9.com, All Rights Reserved.

ICode9版权所有