ICode9

精准搜索请尝试: 精确搜索
首页 > 其他分享> 文章详细

9. Complex Vectors and Matrices

2022-04-05 19:00:36  阅读:285  来源: 互联网

标签:begin right end matrix Vectors overline Complex Matrices left


9.1 Real versus Complex

  1. R= line of all real numbers (\(-\infty < x < \infty\)) \(\longleftrightarrow\) C=plane of all complex numbers \(z=x+iy\)
  2. |x| = absolute value of x \(\longleftrightarrow\) \(|z| = \sqrt{x^2+y^2} = r\) = absolute value (or modulus) of z
  3. 1 and -1 solve \(x^2=1\) \(\longleftrightarrow\) \(z=1,w,...,w^{n-1}\) solve \(z^n=1\) where \(w = e^{2\pi i/n}\)
  4. \(R^n\) : vectors with n real components \(\longleftrightarrow\) \(C^n\): vectors with n complex components
  5. length : \(||x||^2 = x_1^2 + \cdots + x_n^2\) \(\longleftrightarrow\) \(||z||^2 = |z_1|^2 + \cdots + |z_n|^2\)
  6. transpose : \(A_{ij}^T = A_{ji}\) \(\longleftrightarrow\) conjugate transpose \(A_{ij}^H = \overline{A_{ji}}\)
  7. dot/inner product : \(x^Ty = x_1y_1 + \cdots + x_ny_n\) \(\longleftrightarrow\) dot/inner product : \(u^Hv = \overline{u_1}v_1 + \cdots + \overline{u_n}v_n\)
  8. reason for \(A^T\) : \((Ax)^Ty = x^T(A^Ty)\) \(\longleftrightarrow\) reason for \(A^H\): \((Au)^Hv = u^H(A^Hv)\)
  9. orthgonality : \(x^Ty = 0\) \(\longleftrightarrow\) orthgonality : \(u^Hv = 0\)
  10. symmetric matrices: \(S=S^T\) \(\longleftrightarrow\) Hermitian matrices: \(S=S^H\)
  11. skew-symmetric matrices : \(K^T = K^{-1}\) \(\longleftrightarrow\) skew-Hermitian matrices : \(K^H = -K\)
  12. orthgonal matrices : \(Q^T = Q^{-1}\) \(\longleftrightarrow\) unitary matrices : \(U^H = U^{-1}\)
  13. orthonormal matrices : \(Q^TQ = I\) \(\longleftrightarrow\) orthonormal matrices : \(U^HU = I\)
  14. \(S = Q\Lambda Q^{-1} = Q\Lambda Q^T\) \(\longleftrightarrow\) \(S = U\Lambda U^{-1} = U\Lambda U^H\)
  15. \((Qx)^T(Qy)= x^Ty\) and \(||Qx|| = ||x||\) \(\longleftrightarrow\) \((Ux)^H(Uy)= x^Hy\) and \(||Uz|| = ||z||\)

9.2 Complex Numbers

Complex numbers correspond to points in a plane. Real numbers go along the x axis.Pure imaginary numbers are on the y axis. The complex number \(a+bi\) is at the point with coordinates (a, b).

Keys:

  1. Add : \((a + bi) + (c + di) = (a+c)+(b+d)i\)

  2. Multiply : \((a+bi)(a-bi)=a^2+b^2\)

  3. Eigenvalues \(\lambda\) 和 \(\overline{\lambda}\) : If \(Ax=\lambda x\) and A is real then \(A\overline{x}=\overline{\lambda}\overline{x}\)

  4. Euler's Formula : \(e^{i\theta}= cos\theta + isin\theta\)

  5. Polar Form : The number \(z=a+ib\) is also \(z=rcos\theta + irsin\theta = re^{i\theta} \ \ with \ \ r = |z| = \sqrt{a^2 + b^2}\)

  6. Powers: The nth power of \(z=r(cos\theta+isin\theta)\) is \(z^n=r^n(cos(n\theta)+isin(n\theta))\)

  7. The nth roots of 1 : Set \(w=e^{2\pi i/n}\), the nth powers of \(1,w,w^2,...,w^{n-1}\) all equal 1, they solve the equation \(z^n=1\)

9.3 Hermitian and Unitary Matrices

When we transpose a complex vector z or matrix A , also take the complex conjugate too.

With \(z_j = a_j + i b_j\):

conjugate transpose : \(\overline{z}^T=[\overline{z_1} \cdots \overline{z_n}] = [a_1 - ib_1 \cdots a_n - ib_n]\)

length squared : \([\overline{z_1} \cdots \overline{z_n}] \left[ \begin{matrix} z_1 \\ \vdots \\ z_n\end{matrix}\right]= |z_1|^2 + \cdots + |z_n|^2 \longleftrightarrow \overline{z}^Tz=z^Hz = ||z||^2\) (\(z^H\) is z Hermitian)

Inner product : \(u^{H}v = [\overline{u_1} \cdots \overline{u_n}] \left[ \begin{matrix} v_1 \\ \vdots \\ v_n\end{matrix}\right]= \overline{u_1}v_1 + \cdots + \overline{u_n}v_n\)

Hermitian Matrix

Among complex matrices, with Hermitian matrices : \(S=S^H, s_{ij} = \overline{s_{ji}}\)

\[S = \left[ \begin{matrix} 2&3-3i \\ 3+3i&5 \end{matrix} \right] \\ S^H = \left[ \begin{matrix} 2&3+3(-i) \\ 3-3(-i)&5 \end{matrix} \right] = \left[ \begin{matrix} 2&3-3i \\ 3+3i&5 \end{matrix} \right] = S \\ \]

Eigenvalues of a Hermitian matrix is real, and eigenvectors of a Hermitian are orthogonal.

Unitary Matrices

A unitary matrix Q is a complex square matrix that has orthonormal columns.

Unitary matrix that diagonalizes S : \(Q=\frac{1}{\sqrt{3}}\left[ \begin{matrix} 1&1-i \\ 1+i&-1 \end{matrix}\right]\)

Orthonormal columns : \(Q^HQ=I\)

Square + Orthonormal columns = Unitary matrix : \(Q^{H} = Q^{-1}\)

If Q is unitary the \(||Qz||=||z||\). Therefore \(Qz=\lambda z\) leads to \(|\lambda| = 1\)

9.4 The Fast Fourier Transform

Fourier Matrix

\[F_n = \left [ \begin{matrix} 1&1&\cdots&1 \\ 1&w^1&\cdots&w^{n-1} \\ 1&w^2&\cdots&w^{2(n-1)}\\ \vdots&\vdots&\vdots&\vdots \\ 1&w^{n-1}&\cdots&w^{(n-1)^2}\end{matrix} \right] \\ (F_n)_{ij} = w^{ij}, (i,j=0,1,2,...,n-1) \\ w_n = e^{2\pi / n * i} \\ w_n = e^{\pi / 2 * i} = i, w_n = e^{\pi * i} = -1 \\ w_n = e^{3\pi / 2 * i} = -i, w_n = e^{2\pi * i} = 1 \]

example:

\(F_4\) is orthogonal and symmetric.

\[F_4 = \left [ \begin{matrix} 1&1&1&1 \\ 1&w_4^1&w_4^{2}&w_4^{3} \\ 1&w_4^2&w_4^{4}&w_4^{6}\\ 1&w_4^{3}&w_4^{6}&w_4^{9}\end{matrix} \right] = \left [ \begin{matrix} 1&1&1&1 \\ 1&i&-1&-i \\ 1&-1&1&-1\\ 1&-i&-1&i\end{matrix} \right] \\ \left [ \begin{matrix} &&& \\ &F_2&& \\ &&& \\ &&&F_2\end{matrix} \right] = \left [ \begin{matrix} 1&1&& \\ 1&i^2&& \\ &&1&1\\ &&1&i^2\end{matrix} \right] \\ \Downarrow \\ F_4 = \left [ \begin{matrix} 1&1&1&1 \\ 1&w_4^1&w_4^{2}&w_4^{3} \\ 1&w_4^2&w_4^{4}&w_4^{6}\\ 1&w_4^{3}&w_4^{6}&w_4^{9}\end{matrix} \right] = \left [ \begin{matrix} 1&&1& \\ &1&&i \\ 1&&-1&\\ &1&&-i\end{matrix} \right] \left [ \begin{matrix} 1&1&& \\ 1&i^2&& \\ &&1&1\\ &&1&i^2\end{matrix} \right] \left [ \begin{matrix} 1&&& \\ &&1& \\ &1&& \\ &&&1 \end{matrix} \right] \\ \]

\(w_4 = e^{\pi / 2 * i} \\ F_4^{H}F_4 = I, \ \ F^{-1}_4 = \frac{1}{4}\overline{F}_4\)

The key idea is to connect \(F_n\) with the half-size Fourier matrix \(F_{n/2}\), and keep going to \(F_{n/4}\),which can be factored in a way that procdeces many zeros, and improve multiply quickly.

Save more than half of time : \(n^2 \Rightarrow 1/2 n log_2^n\)

\[F_{64} = \left[ \begin{matrix} I_{32}&D_{32} \\ I_{32}&-D_{32} \end{matrix}\right] \left[ \begin{matrix} F_{32}&0 \\ 0&F_{32} \end{matrix}\right] \left[ \begin{matrix} P_{64} \end{matrix}\right] \\ =\left[ \begin{matrix} \left[ \begin{matrix} I_{16}&D_{16} \\ I_{16}&-D_{16} \end{matrix}\right]&0 \\ 0& \left[ \begin{matrix} I_{16}&D_{16} \\ I_{16}&-D_{16}\end{matrix}\right] \end{matrix}\right] \left[ \begin{matrix} \left[ \begin{matrix} F_{16}&0 \\ 0&F_{16} \end{matrix}\right]&0 \\ 0& \left[ \begin{matrix} F_{16}&0 \\ 0&F_{16} \end{matrix}\right] \end{matrix}\right] \left[ \begin{matrix} P_{32}& \\ &P_{32} \end{matrix}\right] \\ D = \left[ \begin{matrix} 1&&& \\ &w^1&& \\ &&\ddots& \\ &&&w^n \end{matrix}\right] \\ P = \left [ \begin{matrix} even-odd \\ permutation \end{matrix}\right] \]

标签:begin,right,end,matrix,Vectors,overline,Complex,Matrices,left
来源: https://www.cnblogs.com/xiqi2018/p/16103363.html

本站声明: 1. iCode9 技术分享网(下文简称本站)提供的所有内容,仅供技术学习、探讨和分享;
2. 关于本站的所有留言、评论、转载及引用,纯属内容发起人的个人观点,与本站观点和立场无关;
3. 关于本站的所有言论和文字,纯属内容发起人的个人观点,与本站观点和立场无关;
4. 本站文章均是网友提供,不完全保证技术分享内容的完整性、准确性、时效性、风险性和版权归属;如您发现该文章侵犯了您的权益,可联系我们第一时间进行删除;
5. 本站为非盈利性的个人网站,所有内容不会用来进行牟利,也不会利用任何形式的广告来间接获益,纯粹是为了广大技术爱好者提供技术内容和技术思想的分享性交流网站。

专注分享技术,共同学习,共同进步。侵权联系[81616952@qq.com]

Copyright (C)ICode9.com, All Rights Reserved.

ICode9版权所有