ICode9

精准搜索请尝试: 精确搜索
首页 > 其他分享> 文章详细

6. Eigenvalues and Eigenvectors

2022-04-05 18:01:21  阅读:151  来源: 互联网

标签:Eigenvectors begin right end matrix Eigenvalues lambda left


Keys:

  1. What are Eigenvalues and Eigenvectors?
  2. How to find Eigenvalues and Eigenvectors?
  3. Applications of Egenvalues and Eigenvectors:
    • Difference equation \(u_{k+1}=Au_k\)
    • Solution of \(\frac{du}{dt}=Au\)
    • Markov Matrices
    • Projections and Fourier Series
  4. Special Matrix
    • Symmetric Matrices
    • Positive Definite Matrix
    • Similar Matrices
    • Jordan Theorem

6.1 Introduction to Eigenvalues and Eigenvectors

keys:

  1. If X lies along the same direction as AX : \(AX = \lambda X\),then \(\lambda\) is eigenvalue and X is eigenvector.
  2. If \(AX=\lambda X\) then \(A^2X=\lambda^2 X\) and \(A^{-1}X=\lambda^{-1} X\) and \((A+cI)X=(\lambda + c) X\) : the same eigenvector X.
  3. If \(AX=\lambda X\) then \((A-\lambda I)X=0\) and \(A-\lambda I\) is singular and \(det(A-\lambda I)=0\) can find eigenvalues and eigenvectors.
  4. Check : \(\lambda_1 + \lambda_2 + \cdots + \lambda_n = a_{11} + a_{22} + \cdots + a_{nn}\)
  5. Projection Matrix : \(\lambda = 1 \ and \ 0\);Reflections Matrix : \(\lambda = 1 \ and \ -1\);Rotations Matrix : \(\lambda = e^{i \theta} \ and \ e^{-i \theta}\)。

The Equation for the Eigenvalues and Eigenvectors

  1. Compute the determinant of \(A-\lambda I\).
  2. Find the roots of the polynomial of the determinant of \(A-\lambda I\),by solving det(\(A-\lambda I\)) = 0.
  3. For each eigenvalue \(\lambda\),solve \((A-\lambda I)X = 0\) to find an eigenvector X.

example:

\[A = \left[ \begin{matrix} 0&1 \\ 1&0 \end{matrix} \right] \\ \Downarrow \\ solve \ \ characteristic \ \ equation \\ det (A-\lambda I) = \left | \begin{matrix} -\lambda&1 \\ 1&-\lambda \end{matrix} \right| \\ \lambda_1 = 1 \ , \ x_1 = \left[ \begin{matrix} 1 \\ 1 \end{matrix} \right] \\ \lambda_2 = -1 \ , \ x_2 = \left[ \begin{matrix} 1 \\ -1 \end{matrix} \right] \\ check: \lambda_1 + \lambda_2 = a_{11} + a_{22} = 0,\ \ \lambda_1 \lambda_2 = detA = -1 \\ \]

\[B = \left[ \begin{matrix} 3&1 \\ 1&3 \end{matrix} \right] \\ \Downarrow \\ solve \ \ characteristic \ \ equation \\ det (B-\lambda I) = \left | \begin{matrix} 3-\lambda&1 \\ 1&3-\lambda \end{matrix} \right| \\ \lambda_1 = 4 \ , \ x_1 = \left[ \begin{matrix} 1 \\ 1 \end{matrix} \right] \\ \lambda_2 = 2 \ , \ x_2 = \left[ \begin{matrix} 1 \\ -1 \end{matrix} \right] \\ check: \lambda_1 + \lambda_2 = a_{11} + a_{22} = 6,\ \ \lambda_1 \lambda_2 = detB = 8 \\ \]

If \(AX=\lambda X\),the \((A+nI)X = \lambda X + nIX = (\lambda + n)X\);If eigenvectors of A is the same as eigenvectors of B, the \((A+B)X=(\lambda_{A} + \lambda_{B})X\).

Diagonalizing a Matrix

Eigenvectors of A for n different \(\lambda's\) are independent.Then we can diagonalize A.

The columns of X are eigenvectors.

So:

\[AX \\ = A \left[ \begin{matrix} x_1&x_2&\cdots&x_n\end{matrix} \right] \\ = \left[ \begin{matrix} \lambda_1x_1&\lambda_2x_2&\cdots&\lambda_2x_n\end{matrix} \right] \\ = \left[ \begin{matrix} x_1&x_2&\cdots&x_n\end{matrix} \right] \left[ \begin{matrix} \lambda_1&& \\ &\ddots&\\ &&\lambda_n \end{matrix} \right] \\ =X\Lambda \\ \Downarrow \\ AX=X\Lambda \\ X^{-1}AX=\Lambda \ or \ A=X\Lambda X^{-1} \\ \Downarrow \\ A^k =(X\Lambda X^{-1})_1(X\Lambda X^{-1})_2\cdots (X\Lambda X^{-1})_k = X\Lambda^k X^{-1} \]

example:

\[\left[ \begin{matrix} 1&5 \\ 0&6 \end{matrix} \right] = \left[ \begin{matrix} 1&1 \\ 0&1 \end{matrix} \right] \left[ \begin{matrix} 1&0 \\ 0&6 \end{matrix} \right] \left[ \begin{matrix} 1&1 \\ 0&-1 \end{matrix} \right] \\ \left[ \begin{matrix} 1&5 \\ 0&6 \end{matrix} \right]^k = \left[ \begin{matrix} 1&1 \\ 0&1 \end{matrix} \right] \left[ \begin{matrix} 1&0 \\ 0&6 \end{matrix} \right]^k \left[ \begin{matrix} 1&1 \\ 0&-1 \end{matrix} \right] = \left[ \begin{matrix} 1&1 \\ 0&1 \end{matrix} \right] \left[ \begin{matrix} 1^k&0 \\ 0&6^k \end{matrix} \right] \left[ \begin{matrix} 1&1 \\ 0&-1 \end{matrix} \right] \]

When all \(|\lambda_i| < 0\),the \(A^k \rightarrow 0\).

6.2 Applications of Eigenvalue and Eigenvector

Difference equation \(u_{k+1} = Au_k\)

Matrix Powers \(A^k\) : \(u_{k}=A^ku_0 = (X \Lambda X^{-1})(X \Lambda X^{-1})\cdots(X \Lambda X^{-1})u_0=X \Lambda^k X^{-1}u_0\)

step1 :

\[u_0 = c_1x_1 + c_2x_2 + \cdots + c_nx_n = \left[ \begin{matrix} x_1&x_2&\cdots&x_n \end{matrix}\right] \left[ \begin{matrix} c_1\\c_2\\\vdots\\c_n \end{matrix}\right] = Xc \\ \Downarrow \\ c = X^{-1}u_0 \]

step2~3:

\[u_{k}=A^ku_0 = X \Lambda^k X^{-1} u_0 = X \Lambda^k c = \left[ \begin{matrix} x_1&x_2&\cdots&x_n \end{matrix}\right] \left[ \begin{matrix} (\lambda_1)^k&& \\ &(\lambda_2)^k \\ &&\ddots \\ &&&(\lambda_n)^k\end{matrix} \right] \left[ \begin{matrix} c_1\\c_2\\\vdots\\c_n \end{matrix}\right] \\ \Downarrow \\ u_k = c_1(\lambda_1)^kx_1 + c_2(\lambda_2)^kx_2 + \cdots + c_n(\lambda_n)^kx_n \]

It solves \(u_{k+1} = Au_k\)

example:

Fibonacci Numbers: 0,1,1,2,3,5,8,13...

\(F_{k+2}=F_{k+1}+F_{k}\)

Let \(u_k = \left[ \begin{matrix} F_{k+1}\\F_k \end{matrix}\right]\)

\[F_{k+2} = F_{k+1} + F_{k} \\ F_{k+1} = F_{k+1} \\ \Downarrow \\ u_{k+1}= \left[ \begin{matrix} 1&1\\1&0 \end{matrix} \right]u_{k} \\ \Downarrow \\ A=\left[ \begin{matrix} 1&1\\1&0 \end{matrix} \right] \\ det(A-\lambda I) = 0 \\ \Downarrow \\ \lambda_1 = \frac{1+\sqrt{5}}{2} =1.618, \ \ x_1=\left[ \begin{matrix} \lambda_1\\1\end{matrix}\right] \\ \lambda_2 = \frac{1-\sqrt{5}}{2} =-0.618, \ \ x_2=\left[ \begin{matrix} \lambda_2\\1\end{matrix}\right] \\ and \\ u_0 = \left[ \begin{matrix} 1\\0 \end{matrix}\right] = c_1x_1 + c_2x_2 \rightarrow c_1 = \frac{1}{\lambda_1 - \lambda_2}, c_2 = \frac{1}{\lambda_2 - \lambda_1} \\ \Downarrow \\ u_k = c_1(\lambda_1)^kx_1 + c_2(\lambda_2)^kx_2\\ u_{100} = \frac{(\lambda_1)^{100}x_1-(\lambda_2)^{100}x_2}{\lambda_1 - \lambda_2} \]

Solution of du/dt = Au

key : \(e^{At}\)

Taylor Series : \(e^x = 1 + x + \frac{1}{2}x^2+\cdots+\frac{1}{n!}x^n\)

S is eigenvectors matrix of A.

\[e^{At} = I + At + \frac{1}{2}(At)^2+\cdots+\frac{1}{n!}(At)^n \\ A = S\Lambda S^{-1} \\ I = SS^{-1} \\ \Downarrow \\ e^{At} = SS^{-1} + S\Lambda S^{-1}t + \frac{1}{2}(S\Lambda S^{-1}t)^2+\cdots+\frac{1}{n!}(S\Lambda S^{-1}t)^n \\ =S (I+ \Lambda t + \frac{1}{2}(\Lambda t)^2+\cdots+\frac{1}{n!}(\Lambda t)^n)S^{-1} \\ \Downarrow \\ \Lambda = \left[ \begin{matrix} \lambda_1&& \\ &\lambda_2 \\ &&\ddots \\ &&&\lambda_n\end{matrix} \right] \\ e^{\Lambda t} = \left[ \begin{matrix} e^{\lambda_1t}&& \\ &e^{\lambda_2t} \\ &&\ddots \\ &&&e^{\lambda_nt}\end{matrix} \right] \\ \Downarrow \\ e^{At}=Se^{\Lambda t}S^{-1} \]

Solve Steps:

  1. Find eigenvalues and eigenvectors of A by solving \(det(A-\lambda I)=0\).

  2. Write u(0) as a combination \(c_1x_1 + c_2x_2 + \cdots + c_nx_n\) of the eigenvectors of A.

  3. Multiply each eigenvector \(x_i\) by its growth factor \(e^{\lambda_i t}\).

  4. The solution is the combinations of those pure solutions \(e^{\lambda t}x\).

    \[\frac{du}{dt} = Au \\ u(t) = c_1e^{\lambda_1 t}x_1 + c_2e^{\lambda_2 t}x_2 + \cdots + c_ne^{\lambda_n t}x_n \]

example:

\[\frac{du_1}{dt} = -u_1 + 2u_2 \\ \frac{du_2}{dt} = u_1 - 2u_2 \\ \Downarrow step1 \\ u' = Au = \left[ \begin{matrix} -1&2 \\ 1&-2 \end{matrix} \right] u \\ \lambda_1 = 0, x_1 = \left[ \begin{matrix} 2\\1 \end{matrix}\right] \\ \lambda_2 = -3, x_2 = \left[ \begin{matrix} -1\\1 \end{matrix}\right] \\ \Downarrow step2 \\ u(0) = \left[ \begin{matrix} 1\\0 \end{matrix} \right] = c_1x_1 + c_2x_2 \\ c_1 = 1/3, c_2 = -1/3 \\ \Downarrow step3 \\ u(t) = c_1e^{\lambda_1 t}x_1 + c_2e^{\lambda_2 t}x_2 = 1/3 \left[ \begin{matrix} 2 \\ 1 \end{matrix} \right] - 1/3 e^{-3t}\left[ \begin{matrix} -1 \\ 1 \end{matrix} \right] \\ \Downarrow steady \ \ state\\ u(\infty) = 1/3 \left[ \begin{matrix} 2 \\ 1 \end{matrix} \right] \]

State:

  1. Stabillity : \(u(t) -> 0 (e^{\lambda t}->0, real\ \ part\ \ \lambda < 0)\)
  2. Steady State : \(\lambda_1 = 0\) and other real part \(\lambda's < 0\)
  3. Blow up if any real part \(\lambda > 0\)

Markov Matrices

keys:

  1. All entries >=0.
  2. All columns add to 1.
  3. \(\lambda =1\) is one of eigenvalues.
  4. All other \(|\lambda_i|<1\).
  5. \(u_k = A^{k}u_0 = c_1\lambda_1^{k}x_1 + c_2\lambda_2^{k}x_2 + \cdots + c_n\lambda_n^{k}x_n \rightarrow c_1x_1 \ \ (steady \ \ state)\)

example: people movement model

\(u_{k+1} = Au_{k}\),A is Markov Matrix.

\[\left [ \begin{matrix} u_{col} \\ u_{mass} \end{matrix}\right]_{t=k+1} = \left [ \begin{matrix} 0.9&0.2 \\ 0.1&0.8 \end{matrix}\right] \left [ \begin{matrix} u_{col} \\ u_{mass} \end{matrix}\right]_{t=k} \\ \Downarrow \\ \lambda_1 = 1, x_1=\left [ \begin{matrix} 2 \\ 1 \end{matrix}\right] \\ \lambda_2 = 0.7, x_2=\left [ \begin{matrix} -1 \\ 1 \end{matrix}\right] \\ \]

if \(\left [ \begin{matrix} u_{col} \\ u_{mass} \end{matrix}\right]_{0} = \left [ \begin{matrix} 0 \\ 1000 \end{matrix}\right]\) , and \(c_1=1000/3, c_2=2000/3\)

\(u_k = c_1\lambda_1^{k}x_1+c_2\lambda_2^{k}x_2 = \frac{1000}{3}1^{k}\left [ \begin{matrix} 2 \\ 1 \end{matrix}\right] + \frac{2000}{3}0.7^{k}\left [ \begin{matrix} -1 \\ 1 \end{matrix}\right] \rightarrow \frac{1000}{3}\left [ \begin{matrix} 2 \\ 1 \end{matrix}\right]\) (steady state)

?Projections and Fourier Series

Projections with orthonormal basis:

\[Q = \left [ \begin{matrix} q_1&q_2&\cdots&q_n \end{matrix}\right],Q^{T}=Q^{-1}\\ V = x_1q_1 + x_2q_2 + \cdots + x_nq_n = \left [ \begin{matrix} q_1&q_2&\cdots&q_n \end{matrix}\right] \left [ \begin{matrix} x_1\\x_2\\\vdots\\x_n \end{matrix}\right] =QX \\ \Downarrow \\ Q^{-1}V = Q^{-1}QX \\ \Downarrow \\ Q^{T}V = X \]

Fourier series:

\(f(x) = a_0 + a_1cosx + b_1sinx + a_2cos2x + b_2sin2x + \cdots + b_nsinnx\)

(\(1,cosx,sinx,cos2x,sin2x...\)) are basis of f(x)

check: \(f(x) = f(x+ 2\pi)\)

\(f^Tg = \int_{0}^{2\pi}f(x)g(x)dx=0\) with f(x) = 1,cosx,sinx,cos2x,sin2x..., g(x) = 1,cosx,sinx,cos2x,sin2x..., \(f(x) \neq g(x)\)

example:

\(\int_{0}^{2\pi}f(x)cosxdx= \int_{0}^{2\pi}(a_0cosx + a_1(cosx)^2 + b_1cosxsinx...)dx= a_1\int_{0}^{2\pi} (cosx)^2 dx = a_1\pi\)

\(a_1 = \frac{1}{\pi}\int_{0}^{2\pi}f(x)cosxdx\)

6.3 Special Matrix

6.3.1 Symmetric Matrices

keys:

  1. A symmetric matrix S has n real eigenvalues \(\lambda_i\) and n orthonormal eigenvectors \(q_1,q_2,...,q_n\).
  2. Every real symmetric S can be diagonalized: \(S=Q \Lambda Q^{-1} = Q \Lambda Q^{T} =\left[ \begin{matrix} q_1&q_2&\cdots&q_n \end{matrix}\right] \left[ \begin{matrix} \lambda_1&& \\ &\lambda_2 \\ &&\ddots \\ &&&\lambda_n\end{matrix} \right] \left[ \begin{matrix} q_1^{T}\\q_2^{T}\\\vdots\\q_n^{T} \end{matrix}\right]\).
  3. The number of positive eigenvalues of S equals the number of positive pivots.
  4. Antisymmetric matrices \(A = A^{-T}\) have imaginary \(\lambda's\) and orthonormal (complex) q's.

example:

\[S = \left[ \begin{matrix} 1&2 \\ 2&4 \end{matrix}\right] \\ S-\lambda I = \left[ \begin{matrix} 1-\lambda&2 \\ 2&4-\lambda \end{matrix}\right]\\ \Downarrow\\ \lambda_1 = 0, x_1=\left[ \begin{matrix} 2 \\ -1 \end{matrix}\right] \\ \lambda_2 = 5, x_2=\left[ \begin{matrix} 1 \\ 2 \end{matrix}\right] \\ \Downarrow\\ Q^{-1}SQ = \frac{1}{\sqrt{5}} \left[ \begin{matrix} 2&-1 \\ 1&2 \end{matrix}\right] \left[ \begin{matrix} 1&2 \\ 2&4 \end{matrix}\right] \frac{1}{\sqrt{5}}\left[ \begin{matrix} 2&1 \\ -1&2 \end{matrix}\right] =\left[ \begin{matrix} 0&0 \\ 0&5 \end{matrix}\right] = \Lambda \]

6.3.2 Positive Definite Matrix

keys:

  1. Symmetric S : all eigenvalues > 0 \(\Leftrightarrow\) all pivots > 0 \(\Leftrightarrow\) all upper left determinants > 0

  2. The Symmetric S is the postive definite : \(x^TSx > 0\) for all vectors \(x\neq0\).

  3. \(A^TA\) is positive definite matrix.

    proof: A is m by n

    \[x^T(A^TA)x = (Ax)^T(Ax) = |Ax|^2 >= 0 \\ if \ \ A \ \ rank=n \\ |Ax|^2 >0 \]

    \(A^TA\) is positive definite matrix.

    \(A^TA\) is invertible, that \(\widehat{x} = (A^TA)^{-1}A^Tb\) work fine.

example:

\[S = \left [ \begin{matrix} 2&-1&0 \\ -1&2&-1 \\ 0&-1&2 \end{matrix}\right] \\ pivots : 2,3/2,4/3 >0 \\ left \ \ upper \ \ det : 2,3,4 >0 \\ eigenvalues : 2-\sqrt{2},2,2+\sqrt{2} \\ f = x^TSx = 2x_1^2 + 2x_2^2 + 2x_3^2-2x_1x_2-2x_2x_3 = (x_1-x_2)^2 + (x_2-x_3)^2 + x_1^2 > 0 \]

so A is positive definite matrix.

Minimum :

First derivatives : \(\frac{\partial f}{\partial x_1} = \frac{\partial f}{\partial x_2} = \frac{\partial f}{\partial x_3} =0\)

Second derivatives : \(\frac{\partial^2 f}{\partial x_1^2} = \frac{\partial^2 f}{\partial x_2^2} = \frac{\partial^2 f}{\partial x_3^2} >0\)

Maximum :

First derivatives : \(\frac{\partial f}{\partial x_1} = \frac{\partial f}{\partial x_2} = \frac{\partial f}{\partial x_3} =0\)

Second derivatives : \(\frac{\partial^2 f}{\partial x_1^2} = \frac{\partial^2 f}{\partial x_2^2} = \frac{\partial^2 f}{\partial x_3^2} <0\)

when \(f = x^TAx = 2x_1^2 + 2x_2^2 + 2x_3^2-2x_1x_2-2x_2x_3 = (x_1-x_2)^2 + (x_2-x_3)^2 + x_1^2 = 1\)

\(x^TAx=1\) describe an ellipse in 4D, with \(A=Q\Lambda Q^{T}\), Q are the directions of the principal axes, \(\Lambda\) are the lengths of those axes.

6.3.3 Similar Matrices

if \(B = M^{-1}AM\) for some matrix M, that A and B are similar.

example: \(A = \left [ \begin{matrix} 2&1 \\ 1&2 \end{matrix}\right]\)

  1. Special example: A is similar to \(\Lambda\),\(S^{-1}A S = \Lambda \ 或 \ A=S^{-1}\Lambda S \Rightarrow \Lambda = \left [ \begin{matrix} 3&0 \\ 0&1 \end{matrix}\right]\);

  2. other :

    \[B = M^{-1}AM =\left [ \begin{matrix} 1&-4 \\ 0&1 \end{matrix}\right] \left [ \begin{matrix} 2&1 \\ 1&2 \end{matrix}\right] \left [ \begin{matrix} 1&4 \\ 0&1 \end{matrix}\right] = \left [ \begin{matrix} -2&-15 \\ 1&6 \end{matrix}\right] \]

    \(A,\Lambda,B\) have the same \(\lambda's\).

    • A and \(\Lambda\) with same eigenvalues and eigenvectors.
    • A and B with same eigenvalues and numbers of eigenvectors, different eigenvectors.(\(X_B=M^{-1}X_A\))

?6.3.4 Jordan Theorem

Every square A is similar to a Jordan matrix:

Numbers of Jordan blocks is equal to numbers of eigenvectors.

\[J = \left [ \begin{matrix} J_1&&&\\&J_2&&\\&&\ddots&\\&&&J_d\end{matrix}\right] \]

Good : \(J=\Lambda\),(d=n)

标签:Eigenvectors,begin,right,end,matrix,Eigenvalues,lambda,left
来源: https://www.cnblogs.com/xiqi2018/p/16103143.html

本站声明: 1. iCode9 技术分享网(下文简称本站)提供的所有内容,仅供技术学习、探讨和分享;
2. 关于本站的所有留言、评论、转载及引用,纯属内容发起人的个人观点,与本站观点和立场无关;
3. 关于本站的所有言论和文字,纯属内容发起人的个人观点,与本站观点和立场无关;
4. 本站文章均是网友提供,不完全保证技术分享内容的完整性、准确性、时效性、风险性和版权归属;如您发现该文章侵犯了您的权益,可联系我们第一时间进行删除;
5. 本站为非盈利性的个人网站,所有内容不会用来进行牟利,也不会利用任何形式的广告来间接获益,纯粹是为了广大技术爱好者提供技术内容和技术思想的分享性交流网站。

专注分享技术,共同学习,共同进步。侵权联系[81616952@qq.com]

Copyright (C)ICode9.com, All Rights Reserved.

ICode9版权所有