ICode9

精准搜索请尝试: 精确搜索
首页 > 其他分享> 文章详细

对数据选择合适的时序模型和合适的预测方法

2022-04-01 15:33:17  阅读:250  来源: 互联网

标签:预测 模型 时序 np import 合适 new data reg


待分析数据如下(data.csv):

 特征值说明:

x1 社会从业人数
x2 在岗职工工资总额
x3 社会消费零售总额
x4 城镇居民人均可支配收入
x5 城镇居民人均消费性支出
x6 年末总人口
x7 全社会固定资产投资额
x8 地区生产总值
x9 第一生产值
x10 税收
x11 居民消费价格指数
x12 第三产业与第二产业产值比
x13 居民消费水平
y 财政收入

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

一、对数据进行分析

 读入数据

import numpy as np
import pandas as pd
inputfile = 'C:/Users/86136/Documents/python大数据分析/课本源代码以及数据/chapter6/demo/data/data.csv' # 输入的数据文件
data = pd.read_csv(inputfile) # 读取数据

1、描述性统计分析

# 描述性统计分析
description = [data.min(), data.max(), data.mean(), data.std()]  # 依次计算最小值、最大值、均值、标准差
description = pd.DataFrame(description, index = ['Min', 'Max', 'Mean', 'STD']).T  # 将结果存入数据框
print('描述性统计结果:\n',np.round(description, 2))  # 保留两位小数

分析结果:

 

 

2、相关性分析

# 相关性分析
corr = data.corr(method = 'pearson')  # 计算相关系数矩阵
print('相关系数矩阵为:\n',np.round(corr, 2))  # 保留两位小数

分析结果:

 

 

 绘制相关性热力图

# 绘制热力图
import matplotlib.pyplot as plt
import seaborn as sns
plt.subplots(figsize=(10, 10)) # 设置画面大小 
sns.heatmap(corr, annot=True, vmax=1, square=True, cmap="Greens") #cmap可自定义颜色
plt.title('相关性热力图')
plt.show()
plt.close

热力图结果:

 

 

由相关系数矩阵以及相关性热力图可知x11(居民消费价格指数)对y(财政收入)影响最小

二、灰色预测算法+SVR算法

1、lasso回归选取关键属性

lasso = Lasso(1000)  # 调用Lasso()函数,设置λ的值为1000
lasso.fit(data.iloc[:,0:13],data['y'])
mask = lasso.coef_ != 0  # 返回一个相关系数是否为零的布尔数组
mask = np.append(mask,True)
outputfile ='C:/Users/86136/Documents/python大数据分析/课本源代码以及数据/chapter6/demo/tmp/new_reg_data.csv'  # 输出的数据文件
new_reg_data = data.iloc[:, mask]  # 返回相关系数非零的数据
new_reg_data.to_csv(outputfile)  # 存储数据
print('输出数据的维度为:',new_reg_data.shape)  # 查看输出数据的维度

2、构建灰度预测模型并预测

import sys
sys.path.append('C:/Users/86136/Documents/python大数据分析/课本源代码以及数据/chapter6/demo/code')  # 设置路径
import numpy as np
import pandas as pd
from GM11 import GM11  # 引入自编的灰色预测函数

inputfile1 = '../tmp/new_reg_data.csv'  # 输入的数据文件
inputfile2 = '../data/data.csv'  # 输入的数据文件
new_reg_data = pd.read_csv(inputfile1)  # 读取经过特征选择后的数据
data = pd.read_csv(inputfile2)  # 读取总的数据
new_reg_data.index = range(1994, 2014)
new_reg_data.loc[2014] = None
new_reg_data.loc[2015] = None
l = ['x1', 'x3', 'x4', 'x5', 'x6', 'x7', 'x8', 'x13']
for i in l:
  f = GM11(new_reg_data.loc[range(1994, 2014),i].values)[0]
  new_reg_data.loc[2014,i] = f(len(new_reg_data)-1)  # 2014年预测结果
  new_reg_data.loc[2015,i] = f(len(new_reg_data))  # 2015年预测结果
  new_reg_data[i] = new_reg_data[i].round(2)  # 保留两位小数
outputfile = '../tmp/new_reg_data_GM11.xls'  # 灰色预测后保存的路径
y = list(data['y'].values)  # 提取财政收入列,合并至新数据框中
y.extend([np.nan,np.nan])
new_reg_data['y'] = y
new_reg_data.to_excel(outputfile)  # 结果输出
print('预测结果为:\n',new_reg_data.loc[2014:2015,:])  # 预测结果展示

GM11.py

#-*- coding: utf-8 -*-

def GM11(x0): #自定义灰色预测函数
  import numpy as np
  x1 = x0.cumsum() #1-AGO序列
  z1 = (x1[:len(x1)-1] + x1[1:])/2.0 #紧邻均值(MEAN)生成序列
  z1 = z1.reshape((len(z1),1))
  B = np.append(-z1, np.ones_like(z1), axis = 1)
  Yn = x0[1:].reshape((len(x0)-1, 1))
  [[a],[b]] = np.dot(np.dot(np.linalg.inv(np.dot(B.T, B)), B.T), Yn) #计算参数
  f = lambda k: (x0[0]-b/a)*np.exp(-a*(k-1))-(x0[0]-b/a)*np.exp(-a*(k-2)) #还原值
  delta = np.abs(x0 - np.array([f(i) for i in range(1,len(x0)+1)]))
  C = delta.std()/x0.std()
  P = 1.0*(np.abs(delta - delta.mean()) < 0.6745*x0.std()).sum()/len(x0)
  return f, a, b, x0[0], C, P #返回灰色预测函数、a、b、首项、方差比、小残差概率

3、构建SVR回归预测模型

import matplotlib.pyplot as plt
from sklearn.svm import LinearSVR

inputfile = 'C:/Users/86136/Documents/python大数据分析/课本源代码以及数据/chapter6/demo/tmp/new_reg_data_GM11.xls'  # 灰色预测后保存的路径
data = pd.read_excel(inputfile)  # 读取数据
feature = ['x1', 'x3', 'x4', 'x5', 'x6', 'x7', 'x8', 'x13']  # 属性所在列
#data_train = data.loc[range(1994,2014)].copy()  # 取2014年前的数据建模
data_train = data.iloc[0:20].copy() # 取2014年前的数据建模
data_mean = data_train.mean()
data_std = data_train.std()
data_train = (data_train - data_mean)/data_std  # 数据标准化
x_train = data_train[feature].values  # 属性数据
y_train = data_train['y'].values # 标签数据

linearsvr = LinearSVR()  # 调用LinearSVR()函数
linearsvr.fit(x_train,y_train)
x = ((data[feature] - data_mean[feature])/data_std[feature]).values  # 预测,并还原结果。
data['y_pred'] = linearsvr.predict(x) * data_std['y'] + data_mean['y']
outputfile = '../tmp/new_reg_data_GM11_revenue.xls'  # SVR预测后保存的结果
data.to_excel(outputfile)

print('真实值与预测值分别为:\n',data[['y','y_pred']])

fig = data[['y','y_pred']].plot(subplots = True, style=['b-o','r-*'])  # 画出预测结果图
plt.show()

预测结果:

经实际值与预测值比较可知,灰色预测算法+SVR算法预测效果还不错

 

 

所预测的2014(20)年和2015(21)年财政收入如下:

 

 

 三、ARMA模型

1、平稳性检验

读数据

import pandas as pd
# 参数初始化
discfile = 'C:/Users/86136/Documents/python大数据分析/课本源代码以及数据/chapter6/demo/data/data.csv'
# 读取数据
data = pd.read_csv(discfile)

时序图

# 时序图
import matplotlib.pyplot as plt
plt.rcParams['font.sans-serif'] = ['SimHei']  # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False  # 用来正常显示负号
data.plot()
plt.show()

自相关图

# 自相关图
from statsmodels.graphics.tsaplots import plot_acf
plot_acf(data['y']).show()

对y(财政收入)进行平稳性检验

# 平稳性检测
from statsmodels.tsa.stattools import adfuller as ADF
print('原始序列的ADF检验结果为:', ADF(data['y']))
# 返回值依次为adf、pvalue、usedlag、nobs、critical values、icbest、regresults、resstore
# 差分后的结果
D_data = data.diff().dropna()
feature = ['x1', 'x2', 'x3', 'x4', 'x5', 'x6', 'x7', 'x8', 'x9', 'x10', 'x11', 'x12', 'x13', 'y']  # 属性所在列
D_data.columns = feature
D_data.plot()  # 时序图
plt.show()
plot_acf(D_data['y']).show()  # 自相关图
from statsmodels.graphics.tsaplots import plot_pacf
plot_pacf(D_data['y']).show()  # 偏自相关图
print('差分序列的ADF检验结果为:', ADF(D_data['y']))  # 平稳性检测

白噪声检验

# 白噪声检验
from statsmodels.stats.diagnostic import acorr_ljungbox
print('差分序列的白噪声检验结果为:', acorr_ljungbox(D_data['y'], lags=1))  # 返回统计量和p值

2、模型

from statsmodels.tsa.arima_model import ARIMA

# 定阶
data['y'] = data['y'].astype(float) 
pmax = int(len(D_data)/10)  # 一般阶数不超过length/10
qmax = int(len(D_data)/10)  # 一般阶数不超过length/10 
bic_matrix = []  # BIC矩阵
for p in range(pmax+1):
  tmp = []
  for q in range(qmax+1):
    try:  # 存在部分报错,所以用try来跳过报错。
      tmp.append(ARIMA(data['y'], (p,1,q)).fit().bic)
    except:
      tmp.append(None)
  bic_matrix.append(tmp)

bic_matrix = pd.DataFrame(bic_matrix)  # 从中可以找出最小值

p,q = bic_matrix.stack().idxmin()  # 先用stack展平,然后用idxmin找出最小值位置。
print('BIC最小的p值和q值为:%s、%s' %(p,q)) 
model = ARIMA(data['y'], (p,1,q)).fit()  # 建立ARIMA(0, 1, 1)模型
print('模型报告为:\n', model.summary2())
print('预测未来2年,其预测结果、标准误差、置信区间如下:\n', model.forecast(2))

预测结果:

 

 

 

四、总结

灰色预测算法+SVR算法预测的模型效果更好

 

标签:预测,模型,时序,np,import,合适,new,data,reg
来源: https://www.cnblogs.com/1234f/p/16084048.html

本站声明: 1. iCode9 技术分享网(下文简称本站)提供的所有内容,仅供技术学习、探讨和分享;
2. 关于本站的所有留言、评论、转载及引用,纯属内容发起人的个人观点,与本站观点和立场无关;
3. 关于本站的所有言论和文字,纯属内容发起人的个人观点,与本站观点和立场无关;
4. 本站文章均是网友提供,不完全保证技术分享内容的完整性、准确性、时效性、风险性和版权归属;如您发现该文章侵犯了您的权益,可联系我们第一时间进行删除;
5. 本站为非盈利性的个人网站,所有内容不会用来进行牟利,也不会利用任何形式的广告来间接获益,纯粹是为了广大技术爱好者提供技术内容和技术思想的分享性交流网站。

专注分享技术,共同学习,共同进步。侵权联系[81616952@qq.com]

Copyright (C)ICode9.com, All Rights Reserved.

ICode9版权所有