ICode9

精准搜索请尝试: 精确搜索
首页 > 其他分享> 文章详细

【第十届“泰迪杯”数据挖掘挑战赛】B题:电力系统负荷预测分析 ARIMA、AutoARIMA、LSTM、Prophet、多元Prophet 实现

2022-03-18 17:31:32  阅读:408  来源: 互联网

标签:泰迪杯 plt set df Prophet date train 数据挖掘 ax


目录

相关链接

(1)【第十届“泰迪杯”数据挖掘挑战赛】B题:电力系统负荷预测分析 问题一Baseline方案

(2)【第十届“泰迪杯”数据挖掘挑战赛】B题:电力系统负荷预测分析 问题一ARIMA、AutoARIMA、LSTM、Prophet 多方案实现

完整代码下载链接

https://mianbaoduo.com/o/bread/YpiZmp9v

1 读取数据预处理的文件

import numpy as np
import pandas as pd

import seaborn as sns 
import matplotlib.pyplot as plt 
from colorama import Fore

from sklearn.metrics import mean_absolute_error, mean_squared_error
import math

import warnings # Supress warnings 
warnings.filterwarnings('ignore')
plt.rcParams['font.sans-serif'] = ['SimHei']  # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False  # 用来正常显示负号
np.random.seed(7)

df = pd.read_csv(r"./data/泰迪杯数据2.csv")
df.head()

在这里插入图片描述

df  = df.rename(columns={'日期1':'date'})
df

在这里插入图片描述

2 查看时序

from datetime import datetime, date 

df['date'] = pd.to_datetime(df['date'])
df.head().style.set_properties(subset=['date'], **{'background-color': 'dodgerblue'})

在这里插入图片描述

# To compelte the data, as naive method, we will use ffill
f, ax = plt.subplots(nrows=7, ncols=1, figsize=(15, 25))


for i, column in enumerate(df.drop('date', axis=1).columns):
  。。。略 

在这里插入图片描述

在这里插入图片描述

df = df.sort_values(by='date')

# Check time intervals
df['delta'] = df['date'] - df['date'].shift(1)

df[['date', 'delta']].head()

在这里插入图片描述

df['delta'].sum(), df['delta'].count()

(Timedelta(‘13 days 23:45:00’), 1439)

df = df.drop('delta', axis=1)
df.isna().sum()

date 0
总有功功率(kw) 51
最高温度 6
最低温度 0
白天风力风向 0
夜晚风力风向 0
天气1 0
天气2 0
dtype: int64

3 异常值缺失值

f, ax = plt.subplots(nrows=2, ncols=1, figsize=(15, 15))

。。。略


ax[1].set_xlim([date(2018, 1, 1), date(2018, 1, 15)])

在这里插入图片描述

3.1 HeatMap颜色

Accent, Accent_r, Blues, Blues_r, BrBG, BrBG_r, BuGn, BuGn_r,

BuPu, BuPu_r, CMRmap, CMRmap_r, Dark2, Dark2_r, GnBu, GnBu_r,

Greens, Greens_r, Greys, Greys_r, OrRd, OrRd_r,

Oranges, Oranges_r, PRGn, PRGn_r, Paired, Paired_r, Pastel1, Pastel1_r, Pastel2, Pastel2_r,

PiYG, PiYG_r, PuBu, PuBuGn, PuBuGn_r, PuBu_r, PuOr, PuOr_r, PuRd, PuRd_r, Purples, Purples_r,

RdBu, RdBu_r, RdGy, RdGy_r, RdPu, RdPu_r, RdYlBu, RdYlBu_r, RdYlGn, RdYlGn_r, Reds, Reds_r,

Set1, Set1_r, Set2, Set2_r, Set3, Set3_r, Spectral, Spectral_r, Wistia, Wistia_r, YlGn, YlGnBu,

YlGnBu_r, YlGn_r, YlOrBr, YlOrBr_r, YlOrRd, YlOrRd_r, afmhot, afmhot_r, autumn, autumn_r, binary,

binary_r, bone, bone_r, brg, brg_r, bwr, bwr_r, cividis, cividis_r, cool, cool_r, coolwarm,

coolwarm_r, copper, copper_r, cubehelix, cubehelix_r, flag, flag_r, gist_earth, gist_earth_r,

gist_gray, gist_gray_r, gist_heat, gist_heat_r, gist_ncar, gist_ncar_r, gist_rainbow,

gist_rainbow_r, gist_stern, gist_stern_r, gist_yarg, gist_yarg_r, gnuplot, gnuplot2,

gnuplot2_r, gnuplot_r, gray, gray_r, hot, hot_r, hsv, hsv_r, icefire, icefire_r, inferno,

inferno_r, jet, jet_r, magma, magma_r, mako, mako_r, nipy_spectral, nipy_spectral_r,

ocean, ocean_r, pink, pink_r, plasma, plasma_r, prism, prism_r, rainbow, rainbow_r,

rocket, rocket_r, seismic, seismic_r, spring, spring_r, summer, summer_r, tab10, tab10_r,

tab20, tab20_r, tab20b, tab20b_r, tab20c, tab20c_r, terrain, terrain_r, twilight, twilight_r,

twilight_shifted, twilight_shifted_r, viridis, viridis_r, vlag, vlag_r, winter, winter_r

f, ax = plt.subplots(nrows=1, ncols=1, figsize=(16,5))

sns.heatmap(df.T.isna(), cmap='Reds_r')
ax.set_title('Missing Values', fontsize=16)

for tick in ax.yaxis.get_major_ticks():
    tick.label.set_fontsize(14)
plt.show()

在这里插入图片描述

3.2 缺失值处理(多种填充方式)

f, ax = plt.subplots(nrows=4, ncols=1, figsize=(15, 12))

sns.lineplot(x=df['date'], y=df['总有功功率(kw)'].fillna(0), ax=ax[0], color='darkorange', label = 'modified')
sns.lineplot(x=df['date'], y=df['总有功功率(kw)'].fillna(np.inf), ax=ax[0], color='dodgerblue', label = 'original')
ax[0].set_title('Fill NaN with 0', fontsize=14)
ax[0].set_ylabel(ylabel='Volume', fontsize=14)

。。。略

for i in range(4):
    ax[i].set_xlim([date(2018, 1, 1), date(2018, 1, 15)])
    
plt.tight_layout()
plt.show()

在这里插入图片描述

df['总有功功率(kw)'] = df['总有功功率(kw)'].interpolate()

4 数据平滑与采样

重采样可以提供数据的附加信息。有两种类型的重采样:

上采样是指增加采样频率(例如从几天到几小时)

下采样是指降低采样频率(例如,从几天到几周)

在这个例子中,我们将使用。resample()函数

fig, ax = plt.subplots(ncols=1, nrows=3, sharex=True, figsize=(16,12))

sns.lineplot(df['date'], df['总有功功率(kw)'], color='dodgerblue', ax=ax[0])
ax[0].set_title('总有功功率(kw) Volume', fontsize=14)

。。。略
for i in range(3):
    ax[i].set_xlim([date(2018, 1, 1), date(2018, 1, 14)])

在这里插入图片描述

# As we can see, downsample to weekly could smooth the data and hgelp with analysis
downsample = df[['date',
                 '总有功功率(kw)', 
                ]].resample('7D', on='date').mean().reset_index(drop=False)

# df = downsample.copy()
downsample

在这里插入图片描述

5 平稳性检验

目测:绘制时间序列并检查趋势或季节性

基本统计:分割时间序列并比较每个分区的平均值和方差

统计检验:增强的迪基富勒检验

# A year has 52 weeks (52 weeks * 7 days per week) aporx.
rolling_window = 52
f, ax = plt.subplots(nrows=1, ncols=1, figsize=(15, 6))

。。。略
plt.show()

在这里插入图片描述

现在,我们将检查每个变量: p值小于0.05 检查ADF统计值与critical_values的比较范围

from statsmodels.tsa.stattools import adfuller

result = adfuller(df['总有功功率(kw)'].values)
result

(-5.279986646245767, 6.0232754503160645e-06, 24, 1415,

{‘1%’: -3.434979825137732, ‘5%’: -2.8635847436211317, ‘10%’: -2.5678586114197954}, 29608.16365155926)

# Thanks to https://www.kaggle.com/iamleonie for this function!
f, ax = plt.subplots(nrows=1, ncols=1, figsize=(12, 6))

def visualize_adfuller_results(series, title, ax):
   。。。略

visualize_adfuller_results(df['总有功功率(kw)'].values, '总有功功率(kw)',ax=ax)
# visualize_adfuller_results(df['temperature'].values, 'Temperature', ax[1, 0])
# visualize_adfuller_results(df['river_hydrometry'].values, 'River_Hydrometry', ax[0, 1])
# visualize_adfuller_results(df['drainage_volume'].values, 'Drainage_Volume', ax[1, 1])
# visualize_adfuller_results(df['depth_to_groundwater'].values, 'Depth_to_Groundwater', ax[2, 0])

# f.delaxes(ax[2, 1])
plt.tight_layout()
plt.show()

在这里插入图片描述

如果数据不是静态的,但我们想使用一个模型,如ARIMA(需要这个特征),数据必须转换。

将序列转换为平稳序列的两种最常见的方法是:

​ 变换:例如对数或平方根,以稳定非恒定方差

​ 差分:从以前的值中减去当前值

6 数据转换

(1)对数

df['总有功功率(kw)_log'] = np.log(abs(df['总有功功率(kw)']))

。。。略
sns.distplot(df['总有功功率(kw)_log'], ax=ax[1])

在这里插入图片描述

(2)一阶差分

# First Order Differencing
ts_diff = np.diff(df['总有功功率(kw)'])
df['总有功功率(kw)_diff_1'] = np.append([0], ts_diff)

f, ax = plt.subplots(nrows=1, ncols=1, figsize=(15, 6))
visualize_adfuller_results(df['总有功功率(kw)_diff_1'], 'Differenced (1. Order) \n Depth to Groundwater', ax)

在这里插入图片描述

7 特征工程

7.1 时序提取

df['year'] = pd.DatetimeIndex(df['date']).year
df['month'] = pd.DatetimeIndex(df['date']).month
df['day'] = pd.DatetimeIndex(df['date']).day
。。。略

df[['date', 'year', 'month', 'day', 'day_of_year', 'week_of_year', 'quarter', 'season']].head()

在这里插入图片描述

7.2 编码循环特征

f, ax = plt.subplots(nrows=1, ncols=1, figsize=(20, 3))

sns.lineplot(x=df['date'], y=df['month'], color='dodgerblue')
ax.set_xlim([date(2018, 1, 1), date(2018, 1, 14)])
plt.show()

在这里插入图片描述

month_in_year = 12
df['month_sin'] = np.sin(2*np.pi*df['month']/month_in_year)
df['month_cos'] = np.cos(2*np.pi*df['month']/month_in_year)

f, ax = plt.subplots(nrows=1, ncols=1, figsize=(6, 6))

sns.scatterplot(x=df.month_sin, y=df.month_cos, color='dodgerblue')
plt.show()

在这里插入图片描述

7.3 时间序列分解

from statsmodels.tsa.seasonal import seasonal_decompose

core_columns =  [
    '总有功功率(kw)']
。。。略
fig, ax = plt.subplots(ncols=2, nrows=4, sharex=True, figsize=(16,8))

for i, column in enumerate(['总有功功率(kw)', '最低温度']):
    
    res = seasonal_decompose(df[column], freq=52, model='additive', extrapolate_trend='freq')

    ax[0,i].set_title('Decomposition of {}'.format(column), fontsize=16)
    res.observed.plot(ax=ax[0,i], legend=False, color='dodgerblue')
    ax[0,i].set_ylabel('Observed', fontsize=14)
。。。略

plt.show()

在这里插入图片描述

7.4 滞后特征

weeks_in_month = 4

for column in core_columns:
    df[f'{column}_seasonal_shift_b_2m'] = df[f'{column}_seasonal'].shift(-2 * weeks_in_month)
    df[f'{column}_seasonal_shift_b_1m'] = df[f'{column}_seasonal'].shift(-1 * weeks_in_month)
    df[f'{column}_seasonal_shift_1m'] = df[f'{column}_seasonal'].shift(1 * weeks_in_month)
    df[f'{column}_seasonal_shift_2m'] = df[f'{column}_seasonal'].shift(2 * weeks_in_month)
    df[f'{column}_seasonal_shift_3m'] = df[f'{column}_seasonal'].shift(3 * weeks_in_month)

7.6 探索性数据分析

f, ax = plt.subplots(nrows=1, ncols=1, figsize=(15, 6))
f.suptitle('Seasonal Components of Features', fontsize=16)

for i, column in enumerate(core_columns):
    。。。略
    
plt.tight_layout()
plt.show()

在这里插入图片描述

7.7 相关性分析

f, ax = plt.subplots(nrows=1, ncols=1, figsize=(8, 8))

。。。略

plt.tight_layout()
plt.show()

在这里插入图片描述

7.8 自相关分析

from pandas.plotting import autocorrelation_plot

autocorrelation_plot(df['总有功功率(kw)_diff_1'])
plt.show()

在这里插入图片描述

from statsmodels.graphics.tsaplots import plot_acf
from statsmodels.graphics.tsaplots import plot_pacf

f, ax = plt.subplots(nrows=2, ncols=1, figsize=(16, 8))
。。。略

plt.show()

在这里插入图片描述

8 建模

8.1 时序中交叉验证

from sklearn.model_selection import TimeSeriesSplit

N_SPLITS = 3

X = df['date']
y = df['总有功功率(kw)']

folds = TimeSeriesSplit(n_splits=N_SPLITS)
f, ax = plt.subplots(nrows=N_SPLITS, ncols=2, figsize=(16, 9))

for i, (train_index, valid_index) in enumerate(folds.split(X)):
    。。。略
for i in range(N_SPLITS):
    ax[i, 0].set_xlim([date(2018, 1, 1), date(2018, 1, 14)])
    ax[i, 1].set_xlim([date(2018, 1, 1), date(2018, 6, 30)])
    
plt.tight_layout()
plt.show()

在这里插入图片描述

8.2 单变量时间序列模型

train_size = int(0.85 * len(df))
test_size = len(df) - train_size
df = df.fillna(0)
univariate_df = df[['date', '总有功功率(kw)']].copy()
univariate_df.columns = ['ds', 'y']

train = univariate_df.iloc[:train_size, :]

x_train, y_train = pd.DataFrame(univariate_df.iloc[:train_size, 0]), pd.DataFrame(univariate_df.iloc[:train_size, 1])
x_valid, y_valid = pd.DataFrame(univariate_df.iloc[train_size:, 0]), pd.DataFrame(univariate_df.iloc[train_size:, 1])

print(len(train), len(x_valid))

8.2.1 ARIMA

from statsmodels.tsa.arima_model import ARIMA
import warnings
warnings.ignore=True


。。。略

# Prediction with ARIMA
# y_pred, se, conf = model_fit.forecast(202)
y_pred, se, conf = model_fit.forecast(216)

# Calcuate metrics
score_mae = mean_absolute_error(y_valid, y_pred)
score_rmse = math.sqrt(mean_squared_error(y_valid, y_pred))

print(Fore.GREEN + 'RMSE: {}'.format(score_rmse))

RMSE: 30973.353510293528

f, ax = plt.subplots(1)
f.set_figheight(6)
f.set_figwidth(15)

model_fit.plot_predict(1, 1300, ax=ax)
sns.lineplot(x=x_valid.index, y=y_valid['y'], ax=ax, color='orange', label='Ground truth') #navajowhite

ax.set_title(f'Prediction \n MAE: {score_mae:.2f}, RMSE: {score_rmse:.2f}', fontsize=14)
ax.set_xlabel(xlabel='Date', fontsize=14)
ax.set_ylabel(ylabel='总有功功率(kw)', fontsize=14)

ax.set_ylim(100000, 350392)
plt.show()

在这里插入图片描述

f, ax = plt.subplots(1)
f.set_figheight(4)
f.set_figwidth(15)

sns.lineplot(x=x_valid.index, y=y_pred, ax=ax, color='blue', label='predicted') #navajowhite
sns.lineplot(x=x_valid.index, y=y_valid['y'], ax=ax, color='orange', label='Ground truth') #navajowhite

ax.set_xlabel(xlabel='Date', fontsize=14)
ax.set_ylabel(ylabel='总有功功率(kw)', fontsize=14)

plt.show()

在这里插入图片描述

8.2.2 LSTM

from sklearn.preprocessing import MinMaxScaler

data = univariate_df.filter(['y'])
#Convert the dataframe to a numpy array
dataset = data.values

scaler = MinMaxScaler(feature_range=(-1, 0))
scaled_data = scaler.fit_transform(dataset)

scaled_data[:10]

array([[-0.50891613], [-0.50891613], [-0.59567808], [-0.59567808], [-0.60361527], [-1. ], [-0.63509216], [-0.63509216], [-0.58983584], [-0.58983584]])

# Defines the rolling window
look_back = 52
# Split into train and test sets
train, test = scaled_data[:train_size-look_back,:], scaled_data[train_size-look_back:,:]

d。。。略
x_train, y_train = create_dataset(train, look_back)
x_test, y_test = create_dataset(test, look_back)

# reshape input to be [samples, time steps, features]
x_train = np.reshape(x_train, (x_train.shape[0], 1, x_train.shape[1]))
x_test = np.reshape(x_test, (x_test.shape[0], 1, x_test.shape[1]))

print(len(x_train), len(x_test))
from keras.models import Sequential
from keras.layers import Dense, LSTM

#Build the LSTM model
model = Sequential()
model.add(LSTM(128, return_sequences=True, input_shape=(x_train.shape[1], x_train.shape[2])))
model.add(LSTM(64, return_sequences=False))
model.add(Dense(25))
model.add(Dense(1))

# Compile the model
model.compile(optimizer='adam', loss='mean_squared_error')

#Train the model
model.fit(x_train, y_train, batch_size=16, epochs=10, validation_data=(x_test, y_test))

model.summary()

Epoch 1/10 70/70 [] - 15s 10ms/step - loss: 0.0417 - val_loss: 0.0071 Epoch 2/10 70/70 [] - 0s 3ms/step - loss: 0.0104 - val_loss: 0.0036 Epoch 3/10 70/70 [] - 0s 6ms/step - loss: 0.0081 - val_loss: 0.0023 Epoch 4/10 70/70 [] - 0s 4ms/step - loss: 0.0064 - val_loss: 0.0017 Epoch 5/10 70/70 [] - 0s 4ms/step - loss: 0.0059 - val_loss: 0.0017 Epoch 6/10 70/70 [] - 0s 3ms/step - loss: 0.0053 - val_loss: 0.0019 Epoch 7/10 70/70 [] - 0s 3ms/step - loss: 0.0065 - val_loss: 0.0019 Epoch 8/10 70/70 [] - 0s 3ms/step - loss: 0.0051 - val_loss: 0.0013 Epoch 9/10 70/70 [] - 0s 3ms/step - loss: 0.0048 - val_loss: 0.0023 Epoch 10/10 70/70 [] - 0s 4ms/step - loss: 0.0052 - val_loss: 0.0012 Model: “sequential” _________________________________________________________________

Layer (type) Output Shape Param # =================================================================

lstm (LSTM) (None, 1, 128) 92672

stm_1 (LSTM) (None, 64) 49408

dense (Dense) (None, 25) 1625

dense_1 (Dense) (None, 1) 26 =================================================================

Total params: 143,731 Trainable params: 143,731 Non-trainable params: 0

# Lets predict with the model
train_predict = model.predict(x_train)
test_predict = model.predict(x_test)

# invert predictions
train_predict = scaler.inverse_transform(train_predict)
y_train = scaler.inverse_transform([y_train])

test_predict = scaler.inverse_transform(test_predict)
y_test = scaler.inverse_transform([y_test])

# Get the root mean squared error (RMSE) and MAE
score_rmse = np.sqrt(mean_squared_error(y_test[0], test_predict[:,0]))
score_mae = mean_absolute_error(y_test[0], test_predict[:,0])
print(Fore.GREEN + 'RMSE: {}'.format(score_rmse))
from sklearn.metrics import r2_score
print('R2-score:',r2_score(y_test[0], test_predict[:,0]))

RMSE: 4502.091881948914

R2-score: 0.9519027039841994

x_train_ticks = univariate_df.head(train_size)['ds']
y_train = univariate_df.head(train_size)['y']
x_test_ticks = univariate_df.tail(test_size)['ds']

# Plot the forecast
f, ax = plt.subplots(1)
f.set_figheight(6)
f.set_figwidth(15)

sns.lineplot(x=x_train_ticks, y=y_train, ax=ax, label='Train Set') #navajowhite
sns.lineplot(x=x_test_ticks, y=test_predict[:,0], ax=ax, color='green', label='Prediction') #navajowhite
sns.lineplot(x=x_test_ticks, y=y_test[0], ax=ax, color='orange', label='Ground truth') #navajowhite

ax.set_title(f'Prediction \n MAE: {score_mae:.2f}, RMSE: {score_rmse:.2f}', fontsize=14)
ax.set_xlabel(xlabel='Date', fontsize=14)
ax.set_ylabel(ylabel='总有功功率(kw)', fontsize=14)

plt.show()

在这里插入图片描述

8.2.3 AutoARIMA

from statsmodels.tsa.arima_model import ARIMA
import pmdarima as pm
。。。略
print(model.summary())

在这里插入图片描述

y_pred = model.predict(216)
from sklearn.metrics import r2_score
print('R2-score:',r2_score(y_valid, y_pred))

R2-score: -0.08425358340633804

model.plot_diagnostics(figsize=(16,8))
plt.show()

在这里插入图片描述

8.3 多元时序预测

df.columns

Index([‘date’, ‘总有功功率(kw)’, ‘最高温度’, ‘最低温度’, ‘白天风力风向’, ‘夜晚风力风向’, ‘天气1’, ‘天气2’], dtype=‘object’)

feature_columns = [
     '最高温度', '最低温度', '白天风力风向', '夜晚风力风向', '天气1', '天气2'
]
target_column = ['总有功功率(kw)']

train_size = int(0.85 * len(df))

multivariate_df = df[['date'] + target_column + feature_columns].copy()
multivariate_df.columns = ['ds', 'y'] + feature_columns

train = multivariate_df.iloc[:train_size, :]
x_train, y_train = pd.DataFrame(multivariate_df.iloc[:train_size, [0,2,3,4,5,6,7]]), pd.DataFrame(multivariate_df.iloc[:train_size, 1])
x_valid, y_valid = pd.DataFrame(multivariate_df.iloc[train_size:, [0,2,3,4,5,6,7]]), pd.DataFrame(multivariate_df.iloc[train_size:, 1])

train.head()

在这里插入图片描述

train  =multivariate_df.iloc[:train_size, :]
train

在这里插入图片描述

8.3.1 多元Propher

from fbprophet import Prophet


# Train the model
model = Prophet()
# model.add_regressor('最高温度')
# model.add_regressor('最低温度')
# model.add_regressor('白天风力风向')
# model.add_regressor('夜晚风力风向')
# model.add_regressor('天气1')
# model.add_regressor('天气2')
# Fit the model with train set
model.fit(train)

# Predict on valid set
y_pred = model.predict(x_valid)

# Calcuate metrics
score_mae = mean_absolute_error(y_valid, y_pred['yhat'])
score_rmse = math.sqrt(mean_squared_error(y_valid, y_pred['yhat']))

print(Fore.GREEN + 'RMSE: {}'.format(score_rmse))
from sklearn.metrics import r2_score
print('R2-score:',r2_score(y_valid, y_pred['yhat']))
# Plot the forecast
f, ax = plt.subplots(1)
f.set_figheight(6)
f.set_figwidth(15)

model.plot(y_pred, ax=ax)
sns.lineplot(x=x_valid['ds'], y=y_valid['y'], ax=ax, color='orange', label='Ground truth') #navajowhite

ax.set_title(f'Prediction \n MAE: {score_mae:.2f}, RMSE: {score_rmse:.2f}', fontsize=14)
ax.set_xlabel(xlabel='Date', fontsize=14)
ax.set_ylabel(ylabel='总有功功率(kw)', fontsize=14)

plt.show()

在这里插入图片描述

标签:泰迪杯,plt,set,df,Prophet,date,train,数据挖掘,ax
来源: https://blog.csdn.net/weixin_43935696/article/details/123580248

本站声明: 1. iCode9 技术分享网(下文简称本站)提供的所有内容,仅供技术学习、探讨和分享;
2. 关于本站的所有留言、评论、转载及引用,纯属内容发起人的个人观点,与本站观点和立场无关;
3. 关于本站的所有言论和文字,纯属内容发起人的个人观点,与本站观点和立场无关;
4. 本站文章均是网友提供,不完全保证技术分享内容的完整性、准确性、时效性、风险性和版权归属;如您发现该文章侵犯了您的权益,可联系我们第一时间进行删除;
5. 本站为非盈利性的个人网站,所有内容不会用来进行牟利,也不会利用任何形式的广告来间接获益,纯粹是为了广大技术爱好者提供技术内容和技术思想的分享性交流网站。

专注分享技术,共同学习,共同进步。侵权联系[81616952@qq.com]

Copyright (C)ICode9.com, All Rights Reserved.

ICode9版权所有