ICode9

精准搜索请尝试: 精确搜索
首页 > 其他分享> 文章详细

pytorch入门--土堆深度学习快速入门教程

2022-02-23 20:03:09  阅读:201  来源: 互联网

标签:torch img -- self 入门教程 writer pytorch import data


工具函数

dir函数,让我们直到工具箱,以及工具箱中的分隔区有什么东西

help函数,让我们直到每个工具是如何使用的,工具的使用方法

示例:在pycharm的console环境,输入

import torch
dir(torch.cuda.is_available())

即可查看该工具包

help(torch.cuda.is_available())

DataSet

DataSet提供一种方式去获取数据及其label

DataLoader为网络提供不同数据形式

使用PIL的Image来读取图片:

from PIL import Image
img_path = "your_filename"
img = Image.open(img_path)
img.show()

此时则会打开指定的图片

创建

写自己需要的类时,需要继承Dataset,然后重写getitem方法和len方法

初始化init主要是用来写路径

getitem主要是用来获取每条数据

len方法获取数据集长度

from torch.utils.data import Dataset
from PIL import Image
import os


class MyData(Dataset):
    def __init__(self, root_dir, label_dir):
        self.root_dir = root_dir
        self.label_dir = label_dir
        self.path = os.path.join(self.root_dir, self.label_dir)
        self.image_path = os.listdir(self.path)

    def __getitem__(self, idx):
        image_name = self.image_path[idx]
        image_item_path = os.path.join(self.root_dir, self.label_dir, image_name)
        img = Image.open(image_item_path)
        label = self.label_dir
        return img, label

    def __len__(self):
        return len(self.image_path)


root_dir = "./dataset/hymenoptera_data/train"
ants_label_dir = "ants"
bees_label_dir = "bees"
ants_dataset = MyData(root_dir, ants_label_dir)
bees_dataset = MyData(root_dir, bees_label_dir)
if __name__ == "__main__":
    img, label = ants_dataset[0]
    img.show()
    print(len(ants_dataset))

输出了一张图片和长度

Tensorboard

tensorboard原本是tensorflow的可视化工具,pytorch从1.2.0开始支持

安装

pip install tensorboard

tensorboard使用逻辑:

  • 将代码运行过程中的,某些你关心的数据保存在一个文件夹中(由代码中的writer完成)
  • 再读取这个文件夹中的数据,用浏览器显示出来(通过在命令行运行tensorboard完成)
from torch.utils.tensorboard import SummaryWriter
# 数据将以特定格式存储在logs文件夹中
writer = SummaryWriter("logs")

# writer.add_image()
# writer.add_scalar(tag, scalar_value, global_step=None, walltime=None)
x = range(100)
for i in x:
    writer.add_scalar('y=2x', i * 2, i)

writer.close()

接下来在命令行输入:

tensorboard --logdir=logs --port=6007

接下来读图片:

from torch.utils.tensorboard import SummaryWriter
import numpy as np
from PIL import Image
# 数据将以特定格式存储在logs文件夹中
writer = SummaryWriter("logs")

img_PIL = Image.open(r"dataset/hymenoptera_data/train/ants/0013035.jpg")
img_array = np.array(img_PIL)
# writer.add_image(tag, img_tensor, global_step=None, walltime=None, dataformats='CHW')
# writer.add_images(tag, img_tensor, global_step=None, walltime=None, dataformats='NCHW')
writer.add_image("test",img_array,1,dataformats="HWC")
# writer.add_scalar(tag, scalar_value, global_step=None, walltime=None)
x = range(100)
for i in x:
    writer.add_scalar('y=2x', i * 2, i)

writer.close()

Transforms

Transforms本质上是一个数据类型转换的工具,常用于转换图片成tensor

from torchvision import transforms
from PIL import Image
image_path = "dataset/hymenoptera_data/train/ants/0013035.jpg"
trans_kit = transforms.ToTensor()
img = Image.open(image_path)
img_tensor = trans_kit(img)
print(img_tensor)

也就是说tansforms包含ToTensor在内的工具,先创建这样的类,然后直接调用即可

transforms常用函数为ToTensor、Normalize、Resize、ToPILImage

Compose函数把多个步骤整合到一起,如:

transforms.Compose([
 
    transforms.CenterCrop(10),
 
    transforms.ToTensor(),
 
])

理解魔法函数,可参见这篇文章preview

class Person:
    def __call__(self, name):
        print("__call__"+" hello "+name)

    def hello(self,name):
        print(" hello "+name)

person = Person()
person("zhangsan")
person.hello("lisi")
__call__ hello zhangsan
 hello lisi
from PIL import Image
from torch.utils.tensorboard import SummaryWriter
from torchvision import transforms

writer = SummaryWriter("logs")
img = Image.open("dataset/hymenoptera_data/train/ants/6240338_93729615ec.jpg")

# 首先使用ToTensor方法
trans_totensor = transforms.ToTensor()
img_tensor = trans_totensor(img)
writer.add_image("ToTensor",img_tensor)

# 然后使用Nomalize方法
trans_norm = transforms.Normalize([0.5,0.5,0.5],[0.5,0.5,0.5])
img_nomalize = trans_norm(img_tensor)
writer.add_image("Nomalize",img_nomalize)

# Resize方法
trans_resize = transforms.Resize((512,512))
img_resize = trans_resize(img)
img_resize = trans_totensor(img_resize)
writer.add_image("Resize",img_resize)

# Compose
trans_resize2 = transforms.Resize(512)
trans_compose = transforms.Compose([trans_resize2,trans_totensor])
img_resize2 = trans_compose(img)
writer.add_image("Compose",img_resize2)

writer.close()

在这里只是简单地把均值和方差都设为0.5,出来的效果不是很好

Torchvision

torchvision主要使用他的数据集和transforms

import torchvision
from torch.utils.tensorboard import SummaryWriter

trans_compose = torchvision.transforms.Compose([
torchvision.transforms.ToTensor()
]
)

train_set = torchvision.datasets.CIFAR10(root="./data",train=True,transform=trans_compose,download=True)
test_set = torchvision.datasets.CIFAR10(root="./data",train=False,transform=trans_compose,download=True)

print(test_set[0])
# print(test_set[1])
print(test_set.classes)
img,target = test_set[0]
print(type(img))
print(target)
print(test_set.classes[target])
# img.show()

writer = SummaryWriter("logs")
writer.add_image("cat",img,10)
writer.close()

Dataloader

import torchvision
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter

test_data = torchvision.datasets.CIFAR10("./data",train=False,transform=torchvision.transforms.ToTensor())
test_loader = DataLoader(dataset=test_data,batch_size=64,shuffle=True,num_workers=0,drop_last=False)

img,target = test_data[0]
print(img.shape)
print(target)


writer = SummaryWriter("dataloader")
step = 0
for data in test_loader:
    imgs,targets = data
    writer.add_images("cifar10",imgs,step)
    step += 1

writer.close()

需要注意的是,如果是传很多张图片,则需要使用add_images而不是add_image,这里需要小心

torch

nn.Module

import torch
from torch import nn

class Module(nn.Module):
    def __init__(self):
        super(Module, self).__init__()

    def forward(self,input):
        output = input+1
        return output

module = Module()
x = torch.tensor(1.0)
output = module(x)
print(output)

定义神经网络需要继承nn.Module,然后初始化,再写一个forward函数,这样传入数据之后,就会直接执行forward函数

import torch
import torch.nn.functional as F
input = torch.tensor([[1,2,0,3,1],
                      [0,1,2,3,1],
                      [1,2,1,0,0],
                      [5,2,3,1,1],
                      [2,1,0,1,1]])

kernel = torch.tensor([[1,2,1],
                       [0,1,0],
                       [2,1,0]])

# input.resize(1,1,5,5)
input = torch.reshape(input,[1,1,5,5])
# print(input)
# print(input.shape)
output = torch.reshape(kernel,[1,1,3,3])

result = F.conv2d(input,output,stride=1)
result2 = F.conv2d(input,output,stride=2)
result3 = F.conv2d(input,output,stride=1,padding=1)
# print(result.shape)
print(result2)
print(result3)

nn.Conv2d

import torch
import torchvision
from torch import nn
from torch.nn import Conv2d
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter

dataset = torchvision.datasets.CIFAR10("./data",train=False,transform=torchvision.transforms.ToTensor(),download=True)
dataloader = DataLoader(dataset,batch_size=64)

class Net(nn.Module):
    def __init__(self):
        super().__init__()
        self.conv1 = Conv2d(in_channels=3,out_channels=6,kernel_size=3,stride=1,padding=0)

    def forward(self,x):
        x = self.conv1(x)
        return x

step = 0
net = Net()
writer = SummaryWriter("./logs")
for data in dataloader:
    imgs,targets = data
    output = net(imgs)
    output = torch.reshape(output,[-1,3,30,30])
    writer.add_images("inputs",imgs,step)
    writer.add_images("outputs",output,step)
    step += 1

writer.close()

nn.MaxPool2d

import torch
import torchvision.datasets
from torch import nn
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter

dataset = torchvision.datasets.CIFAR10("./data",train=False,transform=torchvision.transforms.ToTensor(),download=True)
dataloader = DataLoader(dataset,batch_size=64)

class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.maxpool = nn.MaxPool2d(kernel_size=3)

    def forward(self,input):
        output = self.maxpool(input)
        return output

writer = SummaryWriter("./newlogs")
net = Net()
step = 0
for data in dataloader:
    imgs,target = data
    output = net(imgs)
    writer.add_images("input",imgs,step)
    writer.add_images("output",output,step)
    step+=1

writer.close()

nn.Sigmoid

import torch
import torchvision.datasets
from torch import nn
from torch.nn import Sigmoid
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter

dataset = torchvision.datasets.CIFAR10("./data",train=False,transform=torchvision.transforms.ToTensor(),download=True)
dataloader = DataLoader(dataset,batch_size=64)

class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.sigmoid = Sigmoid()

    def forward(self,input):
        output = self.sigmoid(input)
        return output

writer = SummaryWriter("./softmaxlog")
step = 0
net = Net()
for data in dataloader:
    imgs,target = data
    writer.add_images("input",imgs,step)
    output = net(imgs)
    writer.add_images("output",output,step)
    step += 1

writer.close()

nn.Sequential

查看源图像

上图是对cifar10搭建的一个神经网络,首先是一个chanel为3的32*32的图片,经过一个5*5大小的卷积,得到32通道的32*32的层,然后经过一个池化层,再经过一个卷积层和一个池化层,再经过一个卷积和一个池化,然后就拉直,再线性层输出

代码如下:

import torch
import torchvision.datasets
from torch import nn
from torch.nn import Conv2d, MaxPool2d, Flatten, Linear, Sequential
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter

dataset = torchvision.datasets.CIFAR10("./data",train=False,transform=torchvision.transforms.ToTensor(),download=True)
dataloader = DataLoader(dataset,batch_size=64)

class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        # self.conv1 = Conv2d(3,32,kernel_size=5,padding=2)
        # self.maxpool1 = MaxPool2d(2)
        # self.conv2 = Conv2d(32,32,kernel_size=5,padding=2)
        # self.maxpool2 = MaxPool2d(2)
        # self.conv3 = Conv2d(32,64,kernel_size=5,padding=2)
        # self.maxpool3 = MaxPool2d(2)
        # self.flatten = Flatten()
        # self.linear1 = Linear(1024,64)
        # self.linear2 = Linear(64,10)

        self.model = Sequential(
            Conv2d(3, 32, kernel_size=5, padding=2),
            MaxPool2d(2),
            Conv2d(32, 32, kernel_size=5, padding=2),
            MaxPool2d(2),
            Conv2d(32, 64, kernel_size=5, padding=2),
            MaxPool2d(2),
            Flatten(),
            Linear(1024, 64),
            Linear(64, 10)
        )

    def forward(self,x):
        # x = self.conv1(x)
        # x = self.maxpool1(x)
        # x = self.conv2(x)
        # x = self.maxpool2(x)
        # x = self.conv3(x)
        # x = self.maxpool3(x)
        # x = self.flatten(x)
        # x = self.linear1(x)
        # x = self.linear2(x)

        x = self.model(x)
        return x

net = Net()
x = torch.ones((64,3,32,32))
output = net(x)
print(net)
print(output.shape)

writer = SummaryWriter("./nnlogs")
writer.add_graph(net,x)
writer.close()

交叉熵

参考文章1文章2

额外补充一下交叉熵的内容:

熵的定义:无损编码事件信息的最小平均编码长度,对于N种情况进行编码,最小编码长度为$log_2 N$,把N换成$\frac{1}{N}$,那么就变成了$-log_2 P$,P此时指每种情况的概率,那么平均最小长度$Entropy = -\displaystyle\sum^{}_{i}{P(i)log_2P(i)}$

如果熵比较大(即平均编码长度较长),意味着这一信息有较多的可能状态,相应的每个状态的可能性比较低;因此每当来了一个新的信息,我们很难对其作出准确预测,即有着比较大的混乱程度/不确定性/不可预测性

“熵是服从某一特定概率分布事件的理论最小平均编码长度”,只要我们知道了任何事件的概率分布,我们就可以计算它的熵;那如果我们不知道事件的概率分布,又想计算熵,该怎么做呢?那我们来对熵做一个估计吧,熵的估计的过程自然而然的引出了交叉熵

前缀属性,遵守该属性的编码称为前缀编码:任何码字都不应该是另一个码字的前缀

[公式][公式] 的分布越不相同, [公式] 相对于 [公式] 的交叉熵将越大于 [公式] 的熵

接下来是非常难懂的pytorch中的交叉熵公式

给出自己的理解,首先,如果分类不是指定的,那么p(x)为0,直接不计算,那么剩下的就是分类为指定的,比如上图中target为1(dog),那么person和cat对应的p(x)都不计算,然后先经过一个softmax,再进行交叉熵计算。这里的交叉熵计算就得到了$loss(x,class)=-x[class]+log(\displaystyle \sum^{}_{j}{exp(x[j])})$

上面是2022/2/22在pytorch官网的公式,上面也写了${y_n≠ignore_index}$

代码实现交叉熵如下:

import torch
from torch.nn import CrossEntropyLoss

x = torch.tensor([0.1,0.2,0.3])
y = torch.tensor([1])
x = torch.reshape(x,[1,3])
loss_cross = CrossEntropyLoss()
result_loss = loss_cross(x,y)
print(result_loss)

nn.optim

优化使用起来比较简单,这里直接放教程的代码:

optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.9)
for input, target in dataset:
    optimizer.zero_grad()
    output = model(input)
    loss = loss_fn(output, target)
    loss.backward()
    optimizer.step()

模型修改与使用

import torchvision
from torch.nn import Linear

vgg16_false = torchvision.models.vgg16(pretrained=False)
vgg16_false = torchvision.models.vgg16(pretrained=True)

print(vgg16_false)

train_data = torchvision.datasets.CIFAR10("./data",train=True,transform=torchvision.transforms.ToTensor(),download=True)

# 添加
vgg16_false.add_module("add_linear",Linear(1000,10))
# print(vgg16_false)

# 在指定层添加
vgg16_false.classifier.add_module("add_linear",Linear(1000,10))
# print(vgg16_false)

# 修改
vgg16_false.classifier[6] = Linear(4096,10)
print(vgg16_false)

模型保存与加载

import torch
import torchvision

vgg16_false = torchvision.models.vgg16(pretrained=False)

# 保存方式1,模型结构+模型参数
torch.save(vgg16_false,"./vgg16_false.pth")
# 加载方式1
vgg16 = torch.load("./vgg16_false.pth")
# print(vgg16)

# 保存方式2,模型参数(官方推荐)
torch.save(vgg16_false.state_dict(),"./vgg16_false2.pth")
# 加载方式2
vgg16_2 = torchvision.models.vgg16(pretrained=False)
vgg16_2.load_state_dict(torch.load("vgg16_false2.pth"))
print(vgg16_2)

整合

import torch.optim
import torchvision
from torch import nn
from torch.nn import Sequential, Conv2d, MaxPool2d, Flatten, Linear, CrossEntropyLoss
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter

train_data = torchvision.datasets.CIFAR10("./data",train=True,transform=torchvision.transforms.ToTensor(),download=True)
test_data = torchvision.datasets.CIFAR10("./data",train=False,transform=torchvision.transforms.ToTensor(),download=True)

train_data_size = len(train_data)
test_data_size = len(test_data)

print("训练数据集的长度为:{}".format(train_data_size))
print("测试数据集的长度为:{}".format(test_data_size))

train_dataloader = DataLoader(train_data,batch_size=64,drop_last=True)
test_dataloader = DataLoader(test_data,batch_size=64,drop_last=True)

class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.model = Sequential(
            Conv2d(3, 32, kernel_size=5, padding=2),
            MaxPool2d(2),
            Conv2d(32, 32, kernel_size=5, padding=2),
            MaxPool2d(2),
            Conv2d(32, 64, kernel_size=5, padding=2),
            MaxPool2d(2),
            Flatten(),
            Linear(1024, 64),
            Linear(64, 10)
        )

    def forward(self,x):
        x = self.model(x)
        return x
net = Net()
net = net.cuda()
loss_fn = CrossEntropyLoss()
loss_fn = loss_fn.cuda()

learning_rate = 0.01
optimizer = torch.optim.SGD(net.parameters(),lr=learning_rate)

total_train_step = 0
total_test_step = 0
epoch = 10

writer = SummaryWriter("./trainLogs")

for i in range(epoch):
    print("----第{}轮训练开始----".format(i+1))
    for data in train_dataloader:
        imgs,targets = data
        imgs = imgs.cuda()
        targets = targets.cuda()
        outputs = net(imgs)
        train_loss = loss_fn(outputs,targets)
        optimizer.zero_grad()
        train_loss.backward()
        optimizer.step()
        total_train_step += 1
        if total_train_step%100 == 0:
            print("训练次数:{},loss:{}".format(total_train_step,train_loss.item()))
            writer.add_scalar("train_loss",train_loss.item(),total_train_step)

    total_test_loss = 0
    total_accuracy = 0
    with torch.no_grad():
        # torch.no_grad可参见:https://blog.csdn.net/sazass/article/details/116668755
        for data in test_dataloader:
            imgs,targets = data
            imgs = imgs.cuda()
            targets = targets.cuda()
            outputs = net(imgs)
            test_loss = loss_fn(outputs,targets).cuda()
            total_test_loss += test_loss.item()
            accuracy = (outputs.argmax(1) == targets).sum()
            total_accuracy += accuracy

    writer.add_scalar("test_loss",total_test_loss,total_test_step)
    writer.add_scalar("test_accuracy",total_accuracy/test_data_size,total_test_step)
    total_test_step += 1
    print("整体测试集上的loss:{}".format(total_test_loss))
    print("整体测试集上的正确率:{}".format(total_accuracy/test_data_size))

    torch.save(net,"net_{}".format(i))
    print("模型已保存")

writer.close()

正确率并不是很高,训练轮次增加会好点

标签:torch,img,--,self,入门教程,writer,pytorch,import,data
来源: https://www.cnblogs.com/lpzju/p/15928995.html

本站声明: 1. iCode9 技术分享网(下文简称本站)提供的所有内容,仅供技术学习、探讨和分享;
2. 关于本站的所有留言、评论、转载及引用,纯属内容发起人的个人观点,与本站观点和立场无关;
3. 关于本站的所有言论和文字,纯属内容发起人的个人观点,与本站观点和立场无关;
4. 本站文章均是网友提供,不完全保证技术分享内容的完整性、准确性、时效性、风险性和版权归属;如您发现该文章侵犯了您的权益,可联系我们第一时间进行删除;
5. 本站为非盈利性的个人网站,所有内容不会用来进行牟利,也不会利用任何形式的广告来间接获益,纯粹是为了广大技术爱好者提供技术内容和技术思想的分享性交流网站。

专注分享技术,共同学习,共同进步。侵权联系[81616952@qq.com]

Copyright (C)ICode9.com, All Rights Reserved.

ICode9版权所有