ICode9

精准搜索请尝试: 精确搜索
首页 > 其他分享> 文章详细

数据结构——树及二叉树-1

2022-01-16 13:34:35  阅读:177  来源: 互联网

标签:lchild 树及 NULL BTNode 二叉树 rchild 数据结构 节点


实验预备知识:

1. 熟练运用指针进行程序设计,掌握结构体指针。
2. 掌握使用结构体指针访问结构体变量。
3. 掌握指针作为函数的参数使用。
4. 理解树和二叉树的含义、目的和处理方法。

一、实验目的

  1. 理解和掌握树及二叉树的类型定义方法。
  2. 定义二叉树的基本存储结构,实现基本运算,构建二叉树算法库。
  3. 学习利用树及二叉树解决实际问题

二、实验要求

【项目1】----二叉树算法库的建立
定义二叉树的链式存储结构,实现其基本运算,并完成测试。
【要求】:

  1. 头文件btree.h中定义数据结构并声明用于完成基本运算的函数。对应基本运算的函数包括:
void CreateBTNode(BTNode *&b,char *str);     //由str串创建二叉链
BTNode *FindNode(BTNode *b,ElemType x);  //返回data域为x的节点指针
BTNode *LchildNode(BTNode *p);      //返回*p节点的左孩子节点指针
BTNode *RchildNode(BTNode *p);      //返回*p节点的右孩子节点指针
int BTNodeDepth(BTNode *b);     //求二叉树b的深度
void DispBTNode(BTNode *b);     //以括号表示法输出二叉树
void DestroyBTNode(BTNode *&b);    //销毁二叉树

  1. 在btree.cpp中实现这些函数。
  2. 在main函数中完成测试,包括如下内容:

(1)用”A(B(D,E(H(J,K(L,M(,N))))),C(F,G(,I)))”创建如图的二叉树用于测试。
(2)输出二叉树
(3)查找值为’H’的节点,若找到,输出值为’H’的节点的左、右孩子的值
(4)求高度二叉树高度
(5)销毁二叉树
在这里插入图片描述
二叉树的链式存储算法库采用程序的多文件组织形式,包括:

1.头文件:btree.h,包含定义二叉树的链式存储数据结构的代码、宏定义、要实现算法的函数的声明;
2.源文件:btree.cpp,包含实现各种算法的函数的定义;
3.在建立算法库过程中,为了完成测试,在同一项目(project)中建立一个源文件(如main.cpp),编制main函数,完成相关的测试工作。

程序代码:
Main.cpp:

#include <iostream>
#include "btree.h"

using namespace std;

int main()
{
    char str[]="A(B(D,E(H(J,K(L,M(,N))))),C(F,G(,I)))";
    BTNode *b,*p;
    CreateBTNode(b,str);
    DispBTNode(b);
    if(FindNode(b,'H'))
        {
            printf("\n找到了\n");
            p=FindNode(b,'H');
            printf("%c  ",LchildNode(p)->data);
            printf("%c\n",RchildNode(p)->data);
        }
    else
        printf("没找到\n");
    printf("该二叉树的高度为:%d\n",BTNodeDepth(b));
    DestroyBTNode(b);
    printf("已销毁该二叉树\n");
    return 0;
}

Btree.h:

#ifndef BTREE_H_INCLUDED
#define BTREE_H_INCLUDED

#include <stdio.h>
#include <malloc.h>
#define MaxSize 100
typedef char ElemType;
typedef struct node
{
    ElemType data;              //数据元素
    struct node *lchild;        //指向左孩子
    struct node *rchild;        //指向右孩子
} BTNode;
void CreateBTNode(BTNode *&b,char *str);        //由str串创建二叉链
BTNode *FindNode(BTNode *b,ElemType x);     //返回data域为x的节点指针
BTNode *LchildNode(BTNode *p);  //返回*p节点的左孩子节点指针
BTNode *RchildNode(BTNode *p);  //返回*p节点的右孩子节点指针
int BTNodeDepth(BTNode *b); //求二叉树b的深度
void DispBTNode(BTNode *b); //以括号表示法输出二叉树
void DestroyBTNode(BTNode *&b);  //销毁二叉树

void preOrder(BTNode *b);
#endif // BTREE_H_INCLUDED

Btree.cpp:

#include <stdio.h>
#include <malloc.h>
#include "btree.h"

void CreateBTNode(BTNode *&b,char *str)     //由str串创建二叉链
{
    BTNode *St[MaxSize],*p=NULL;
    int top=-1,k,j=0;
    char ch;
    b=NULL;             //建立的二叉树初始时为空
    ch=str[j];
    while (ch!='\0')    //str未扫描完时循环
    {
        switch(ch)
        {
        case '(':
            top++;
            St[top]=p;
            k=1;
            break;      //为左节点
        case ')':
            top--;
            break;
        case ',':
            k=2;
            break;                          //为右节点
        default:
            p=(BTNode *)malloc(sizeof(BTNode));
            p->data=ch;
            p->lchild=p->rchild=NULL;
            if (b==NULL)                    //p指向二叉树的根节点
                b=p;
            else                            //已建立二叉树根节点
            {
                switch(k)
                {
                case 1:
                    St[top]->lchild=p;
                    break;
                case 2:
                    St[top]->rchild=p;
                    break;
                }
            }
        }
        j++;
        ch=str[j];
    }
}
BTNode *FindNode(BTNode *b,ElemType x)  //返回data域为x的节点指针
{
    BTNode *p;
    if (b==NULL)
        return NULL;
    else if (b->data==x)
        return b;
    else
    {
        p=FindNode(b->lchild,x);
        if (p!=NULL)
            return p;
        else
            return FindNode(b->rchild,x);
    }
}
BTNode *LchildNode(BTNode *p)   //返回*p节点的左孩子节点指针
{
    return p->lchild;
}
BTNode *RchildNode(BTNode *p)   //返回*p节点的右孩子节点指针
{
    return p->rchild;
}
int BTNodeDepth(BTNode *b)  //求二叉树b的深度
{
    int lchilddep,rchilddep;
    if (b==NULL)
        return(0);                          //空树的高度为0
    else
    {
        lchilddep=BTNodeDepth(b->lchild);   //求左子树的高度为lchilddep
        rchilddep=BTNodeDepth(b->rchild);   //求右子树的高度为rchilddep
        return (lchilddep>rchilddep)? (lchilddep+1):(rchilddep+1);
    }
}
void DispBTNode(BTNode *b)  //以括号表示法输出二叉树
{
    if (b!=NULL)
    {
        printf("%c",b->data);
        if (b->lchild!=NULL || b->rchild!=NULL)
        {
            printf("(");
            DispBTNode(b->lchild);
            if (b->rchild!=NULL) printf(",");
            DispBTNode(b->rchild);
            printf(")");
        }
    }
}
void DestroyBTNode(BTNode *&b)   //销毁二叉树
{
    if (b!=NULL)
    {
        DestroyBTNode(b->lchild);
        DestroyBTNode(b->rchild);
        free(b);
    }
}
void preOrder(BTNode *b)
{
    if(b != NULL)
    {
        printf("%c",b->data);
        preOrder(b->lchild);
        preOrder(b->rchild);
    }
}

运行结果截图:
在这里插入图片描述
【项目2】实现一种二叉树遍历的算法,并用创建的二叉树进行测试输出各遍历结果。参考代码填入以下表格中.请利用二叉树算法库。

程序代码:
Main.cpp:

#include <iostream>
#include "btree.h"

using namespace std;

int main()
{
    char str[]="A(B(D,E(H(J,K(L,M(,N))))),C(F,G(,I)))";
    BTNode *b;
    CreateBTNode(b,str);
    DispBTNode(b);

    return 0;
}

Btree.h:

#ifndef BTREE_H_INCLUDED
#define BTREE_H_INCLUDED

#include <stdio.h>
#include <malloc.h>
#define MaxSize 100
typedef char ElemType;
typedef struct node
{
    ElemType data;              //数据元素
    struct node *lchild;        //指向左孩子
    struct node *rchild;        //指向右孩子
} BTNode;
void CreateBTNode(BTNode *&b,char *str);        //由str串创建二叉链
BTNode *FindNode(BTNode *b,ElemType x);     //返回data域为x的节点指针
BTNode *LchildNode(BTNode *p);  //返回*p节点的左孩子节点指针
BTNode *RchildNode(BTNode *p);  //返回*p节点的右孩子节点指针
int BTNodeDepth(BTNode *b); //求二叉树b的深度
void DispBTNode(BTNode *b); //以括号表示法输出二叉树
void DestroyBTNode(BTNode *&b);  //销毁二叉树

void preOrder(BTNode *b);
#endif // BTREE_H_INCLUDED

Btree.cpp:

#include <stdio.h>
#include <malloc.h>
#include "btree.h"

void CreateBTNode(BTNode *&b,char *str)     //由str串创建二叉链
{
    BTNode *St[MaxSize],*p=NULL;
    int top=-1,k,j=0;
    char ch;
    b=NULL;             //建立的二叉树初始时为空
    ch=str[j];
    while (ch!='\0')    //str未扫描完时循环
    {
        switch(ch)
        {
        case '(':
            top++;
            St[top]=p;
            k=1;
            break;      //为左节点
        case ')':
            top--;
            break;
        case ',':
            k=2;
            break;                          //为右节点
        default:
            p=(BTNode *)malloc(sizeof(BTNode));
            p->data=ch;
            p->lchild=p->rchild=NULL;
            if (b==NULL)                    //p指向二叉树的根节点
                b=p;
            else                            //已建立二叉树根节点
            {
                switch(k)
                {
                case 1:
                    St[top]->lchild=p;
                    break;
                case 2:
                    St[top]->rchild=p;
                    break;
                }
            }
        }
        j++;
        ch=str[j];
    }
}
BTNode *FindNode(BTNode *b,ElemType x)  //返回data域为x的节点指针
{
    BTNode *p;
    if (b==NULL)
        return NULL;
    else if (b->data==x)
        return b;
    else
    {
        p=FindNode(b->lchild,x);
        if (p!=NULL)
            return p;
        else
            return FindNode(b->rchild,x);
    }
}
BTNode *LchildNode(BTNode *p)   //返回*p节点的左孩子节点指针
{
    return p->lchild;
}
BTNode *RchildNode(BTNode *p)   //返回*p节点的右孩子节点指针
{
    return p->rchild;
}
int BTNodeDepth(BTNode *b)  //求二叉树b的深度
{
    int lchilddep,rchilddep;
    if (b==NULL)
        return(0);                          //空树的高度为0
    else
    {
        lchilddep=BTNodeDepth(b->lchild);   //求左子树的高度为lchilddep
        rchilddep=BTNodeDepth(b->rchild);   //求右子树的高度为rchilddep
        return (lchilddep>rchilddep)? (lchilddep+1):(rchilddep+1);
    }
}
void DispBTNode(BTNode *b)  //以括号表示法输出二叉树
{
    if (b!=NULL)
    {
        printf("%c",b->data);
        if (b->lchild!=NULL || b->rchild!=NULL)
        {
            printf("(");
            DispBTNode(b->lchild);
            if (b->rchild!=NULL) printf(",");
            DispBTNode(b->rchild);
            printf(")");
        }
    }
}
void DestroyBTNode(BTNode *&b)   //销毁二叉树
{
    if (b!=NULL)
    {
        DestroyBTNode(b->lchild);
        DestroyBTNode(b->rchild);
        free(b);
    }
}
void preOrder(BTNode *b)
{
    if(b != NULL)
    {
        printf("%c",b->data);
        preOrder(b->lchild);
        preOrder(b->rchild);
    }
}

运行结果截图:
在这里插入图片描述
【项目3】利用项目2中的算法,实现一个算法求解二叉树中节点的个数。

程序代码:
Main.cpp:

#include <iostream>
#include "btree.h"

using namespace std;

int main()
{
    char str[]="A(B(D,E(H(J,K(L,M(,N))))),C(F,G(,I)))";
    BTNode *b,*p;
    int n=0;
    CreateBTNode(b,str);
    DispBTNode(b);
    if(FindNode(b,'H'))
        {
            printf("\n找到了\n");
            p=FindNode(b,'H');
            printf("%c  ",LchildNode(p)->data);
            printf("%c\n",RchildNode(p)->data);
        }
    else
        printf("没找到\n");
    printf("该二叉树的高度为:%d\n",BTNodeDepth(b));
    countNode(b,n);
    printf("该二叉树节点个数为:%d\n",n);
    DestroyBTNode(b);
    printf("已销毁该二叉树\n");
    return 0;
}

Btree.h:

#ifndef BTREE_H_INCLUDED
#define BTREE_H_INCLUDED

#include <stdio.h>
#include <malloc.h>
#define MaxSize 100
typedef char ElemType;
typedef struct node
{
    ElemType data;              //数据元素
    struct node *lchild;        //指向左孩子
    struct node *rchild;        //指向右孩子
} BTNode;
void CreateBTNode(BTNode *&b,char *str);        //由str串创建二叉链
BTNode *FindNode(BTNode *b,ElemType x);     //返回data域为x的节点指针
BTNode *LchildNode(BTNode *p);  //返回*p节点的左孩子节点指针
BTNode *RchildNode(BTNode *p);  //返回*p节点的右孩子节点指针
int BTNodeDepth(BTNode *b); //求二叉树b的深度
void DispBTNode(BTNode *b); //以括号表示法输出二叉树
void DestroyBTNode(BTNode *&b);  //销毁二叉树

void preOrder(BTNode *b);
void countNode(BTNode *b,int &n);
#endif // BTREE_H_INCLUDED

Btree.cpp:

#include <stdio.h>
#include <malloc.h>
#include "btree.h"

void CreateBTNode(BTNode *&b,char *str)     //由str串创建二叉链
{
    BTNode *St[MaxSize],*p=NULL;
    int top=-1,k,j=0;
    char ch;
    b=NULL;             //建立的二叉树初始时为空
    ch=str[j];
    while (ch!='\0')    //str未扫描完时循环
    {
        switch(ch)
        {
        case '(':
            top++;
            St[top]=p;
            k=1;
            break;      //为左节点
        case ')':
            top--;
            break;
        case ',':
            k=2;
            break;                          //为右节点
        default:
            p=(BTNode *)malloc(sizeof(BTNode));
            p->data=ch;
            p->lchild=p->rchild=NULL;
            if (b==NULL)                    //p指向二叉树的根节点
                b=p;
            else                            //已建立二叉树根节点
            {
                switch(k)
                {
                case 1:
                    St[top]->lchild=p;
                    break;
                case 2:
                    St[top]->rchild=p;
                    break;
                }
            }
        }
        j++;
        ch=str[j];
    }
}
BTNode *FindNode(BTNode *b,ElemType x)  //返回data域为x的节点指针
{
    BTNode *p;
    if (b==NULL)
        return NULL;
    else if (b->data==x)
        return b;
    else
    {
        p=FindNode(b->lchild,x);
        if (p!=NULL)
            return p;
        else
            return FindNode(b->rchild,x);
    }
}
BTNode *LchildNode(BTNode *p)   //返回*p节点的左孩子节点指针
{
    return p->lchild;
}
BTNode *RchildNode(BTNode *p)   //返回*p节点的右孩子节点指针
{
    return p->rchild;
}
int BTNodeDepth(BTNode *b)  //求二叉树b的深度
{
    int lchilddep,rchilddep;
    if (b==NULL)
        return(0);                          //空树的高度为0
    else
    {
        lchilddep=BTNodeDepth(b->lchild);   //求左子树的高度为lchilddep
        rchilddep=BTNodeDepth(b->rchild);   //求右子树的高度为rchilddep
        return (lchilddep>rchilddep)? (lchilddep+1):(rchilddep+1);
    }
}
void DispBTNode(BTNode *b)  //以括号表示法输出二叉树
{
    if (b!=NULL)
    {
        printf("%c",b->data);
        if (b->lchild!=NULL || b->rchild!=NULL)
        {
            printf("(");
            DispBTNode(b->lchild);
            if (b->rchild!=NULL) printf(",");
            DispBTNode(b->rchild);
            printf(")");
        }
    }
}
void DestroyBTNode(BTNode *&b)   //销毁二叉树
{
    if (b!=NULL)
    {
        DestroyBTNode(b->lchild);
        DestroyBTNode(b->rchild);
        free(b);
    }
}
void preOrder(BTNode *b)
{
    if(b != NULL)
    {
        printf("%c",b->data);
        preOrder(b->lchild);
        preOrder(b->rchild);
    }
}
void countNode(BTNode *b,int &n)
{
    if(b!=NULL)
    {
        n++;
        countNode(b->lchild,n);
        countNode(b->rchild,n);
    }
}

运行结果截图:
在这里插入图片描述

标签:lchild,树及,NULL,BTNode,二叉树,rchild,数据结构,节点
来源: https://blog.csdn.net/TTTSEP9TH2244/article/details/122522058

本站声明: 1. iCode9 技术分享网(下文简称本站)提供的所有内容,仅供技术学习、探讨和分享;
2. 关于本站的所有留言、评论、转载及引用,纯属内容发起人的个人观点,与本站观点和立场无关;
3. 关于本站的所有言论和文字,纯属内容发起人的个人观点,与本站观点和立场无关;
4. 本站文章均是网友提供,不完全保证技术分享内容的完整性、准确性、时效性、风险性和版权归属;如您发现该文章侵犯了您的权益,可联系我们第一时间进行删除;
5. 本站为非盈利性的个人网站,所有内容不会用来进行牟利,也不会利用任何形式的广告来间接获益,纯粹是为了广大技术爱好者提供技术内容和技术思想的分享性交流网站。

专注分享技术,共同学习,共同进步。侵权联系[81616952@qq.com]

Copyright (C)ICode9.com, All Rights Reserved.

ICode9版权所有