ICode9

精准搜索请尝试: 精确搜索
首页 > 其他分享> 文章详细

Nand2Tetris 01 - Boolean Logic

2021-12-13 08:31:21  阅读:304  来源: 互联网

标签:01 16 Mux Logic Nand2Tetris bit sel out


背景知识

布尔代数

门逻辑

硬件描述语言 HDL


项目

  • Given: Nand
  • Goal: Build the following gates
Elementary Logic Gates 16-bit Variants Multi-way Variants
Not Not16 Or8Way
And And16 Mux4Way16
Or Or16 Mux8Way16
Xor Mux16 DMux4Way
Mux DMux8Way
DMux

Nand

This gate is considered primitive and thus there is no need to implement it.

Basic Logic Gates

Not

The single-input Not gate, also known as "converter", converts its input from 0 to 1 and vice versa.

// File name: projects/01/Not.hdl

// Not gate:
// out = not in

CHIP Not {
    IN in;
    OUT out;

    PARTS:
    Nand(a=in, b=in, out=out);
}

And

The And function returns 1 when both its inputs are 1, and 0 otherwise.

// File name: projects/01/And.hdl

// And gate: 
// out = 1 if (a == 1 and b == 1)
//       0 otherwise

CHIP And {
    IN a, b;
    OUT out;

    PARTS:
    Nand(a=a, b=b, out=o);
    Not(in=o, out=out);
}

Or

The Or function returns 1 when at least one of its inputs is 1, and 0 otherwise.

// File name: projects/01/Or.hdl

// Or gate:
// out = 1 if (a == 1 or b == 1)
//       0 otherwise

CHIP Or {
    IN a, b;
    OUT out;

    PARTS:
    Not(in=a, out=notA);
    Not(in=b, out=notB);
    And(a=notA, b=notB, out=o);
    Not(in=o, out=out);
}

Xor

The Xor function, also known as "exclusive or", returns 1 when its two inputs have opposing values, and 0 otherwise.

// File name: projects/01/Xor.hdl

// Exclusive-or gate:
// out = not (a == b)

CHIP Xor {
    IN a, b;
    OUT out;

    PARTS:
    Not(in=a, out=notA);
    Not(in=b, out=notB);
    And(a=a, b=notB, out=o1);
    And(a=notA, b=b, out=o2);
    Or(a=o1, b=o2, out=out);
}

Multiplexor

A multiplexor is a three-input gate that uses one of the inputs, called "selection bit", to select and output one of the other two inputs, called "data bits". Thus, a better name for this device might have been selector.

// File name: projects/01/Mux.hdl

// Multiplexor:
// out = a if sel == 0
//       b otherwise

CHIP Mux {
    IN a, b, sel;
    OUT out;

    PARTS:
    Not(in=sel, out=notSel);
    And(a=a, b=notSel, out=outA);
    And(a=b, b=sel, out=outB);
    Or(a=outA, b=outB, out=out);
}

Demultiplexor

A demultiplexor performs the opposite function of a multiplexor: It takes a single input and channels it to one of two possible outputs according to a selector bit that specifies which output to chose.

// File name: projects/01/DMux.hdl

// Demultiplexor:
// {a, b} = {in, 0} if sel == 0
//          {0, in} if sel == 1

CHIP DMux {
    IN in, sel;
    OUT a, b;

    PARTS:
    Not(in=sel, out=notSel);
    And(a=in, b=notSel, out=a);
    And(a=in, b=sel, out=b);
}

Multi-Bit Version of Basic Gates

Multi-Bit Not

An \(n\)-bit Not gate applies the boolean operation Not to every one of the bits in its \(n\)-bit input bus.

// File name: projects/01/Not16.hdl

// 16-bit Not:
// for i=0..15: out[i] = not in[i]

CHIP Not16 {
    IN in[16];
    OUT out[16];

    PARTS:
    Not(in=in[0], out=out[0]);
    Not(in=in[1], out=out[1]);
    Not(in=in[2], out=out[2]);
    Not(in=in[3], out=out[3]);
    Not(in=in[4], out=out[4]);
    Not(in=in[5], out=out[5]);
    Not(in=in[6], out=out[6]);
    Not(in=in[7], out=out[7]);
    Not(in=in[8], out=out[8]);
    Not(in=in[9], out=out[9]);
    Not(in=in[10], out=out[10]);
    Not(in=in[11], out=out[11]);
    Not(in=in[12], out=out[12]);
    Not(in=in[13], out=out[13]);
    Not(in=in[14], out=out[14]);
    Not(in=in[15], out=out[15]);
}

Multi-Bit And

An \(n\)-bit And gate applies the Boolean operation And to every one of the \(n\) bit-pairs arrayed in its two \(n\)-bit input buses.

// File name: projects/01/And16.hdl

// 16-bit bitwise And:
// for i = 0..15: out[i] = (a[i] and b[i])

CHIP And16 {
    IN a[16], b[16];
    OUT out[16];

    PARTS:
    And(a=a[0], b=b[0], out=out[0]);
    And(a=a[1], b=b[1], out=out[1]);
    And(a=a[2], b=b[2], out=out[2]);
    And(a=a[3], b=b[3], out=out[3]);
    And(a=a[4], b=b[4], out=out[4]);
    And(a=a[5], b=b[5], out=out[5]);
    And(a=a[6], b=b[6], out=out[6]);
    And(a=a[7], b=b[7], out=out[7]);
    And(a=a[8], b=b[8], out=out[8]);
    And(a=a[9], b=b[9], out=out[9]);
    And(a=a[10], b=b[10], out=out[10]);
    And(a=a[11], b=b[11], out=out[11]);
    And(a=a[12], b=b[12], out=out[12]);
    And(a=a[13], b=b[13], out=out[13]);
    And(a=a[14], b=b[14], out=out[14]);
    And(a=a[15], b=b[15], out=out[15]);
}

Multi-Bit Or

An \(n\)-bit Or gate applies the Boolean operation Or to every one of the \(n\) bit-pairs arrayed in its two \(n\)-bit input buses.

// File name: projects/01/Or16.hdl

// 16-bit bitwise Or:
// for i = 0..15 out[i] = (a[i] or b[i])

CHIP Or16 {
    IN a[16], b[16];
    OUT out[16];

    PARTS:
    Or(a=a[0], b=b[0], out=out[0]);
    Or(a=a[1], b=b[1], out=out[1]);
    Or(a=a[2], b=b[2], out=out[2]);
    Or(a=a[3], b=b[3], out=out[3]);
    Or(a=a[4], b=b[4], out=out[4]);
    Or(a=a[5], b=b[5], out=out[5]);
    Or(a=a[6], b=b[6], out=out[6]);
    Or(a=a[7], b=b[7], out=out[7]);
    Or(a=a[8], b=b[8], out=out[8]);
    Or(a=a[9], b=b[9], out=out[9]);
    Or(a=a[10], b=b[10], out=out[10]);
    Or(a=a[11], b=b[11], out=out[11]);
    Or(a=a[12], b=b[12], out=out[12]);
    Or(a=a[13], b=b[13], out=out[13]);
    Or(a=a[14], b=b[14], out=out[14]);
    Or(a=a[15], b=b[15], out=out[15]);
}

Multi-Bit Multiplexor

An \(n\)-bit multiplexor is exactly the same as the binary multiplexor, except that the two inputs are each \(n\)-bit wide; the selector is a single bit.

// File name: projects/01/Mux16.hdl

// 16-bit multiplexor: 
// for i = 0..15 out[i] = a[i] if sel == 0 
//                        b[i] if sel == 1

CHIP Mux16 {
    IN a[16], b[16], sel;
    OUT out[16];

    PARTS:
    Mux(a=a[0], b=b[0], sel=sel, out=out[0]);
    Mux(a=a[1], b=b[1], sel=sel, out=out[1]);
    Mux(a=a[2], b=b[2], sel=sel, out=out[2]);
    Mux(a=a[3], b=b[3], sel=sel, out=out[3]);
    Mux(a=a[4], b=b[4], sel=sel, out=out[4]);
    Mux(a=a[5], b=b[5], sel=sel, out=out[5]);
    Mux(a=a[6], b=b[6], sel=sel, out=out[6]);
    Mux(a=a[7], b=b[7], sel=sel, out=out[7]);
    Mux(a=a[8], b=b[8], sel=sel, out=out[8]);
    Mux(a=a[9], b=b[9], sel=sel, out=out[9]);
    Mux(a=a[10], b=b[10], sel=sel, out=out[10]);
    Mux(a=a[11], b=b[11], sel=sel, out=out[11]);
    Mux(a=a[12], b=b[12], sel=sel, out=out[12]);
    Mux(a=a[13], b=b[13], sel=sel, out=out[13]);
    Mux(a=a[14], b=b[14], sel=sel, out=out[14]);
    Mux(a=a[15], b=b[15], sel=sel, out=out[15]);
}

Multi-Way Version of Basic Gates

Multi-Way Or

An \(n\)-way Or gate outputs 1 when at least one of its \(n\) bit inputs is 1, and 0 otherwise.

// File name: projects/01/Or8Way.hdl

// 8-way Or: 
// out = (in[0] or in[1] or ... or in[7])

CHIP Or8Way {
    IN in[8];
    OUT out;

    PARTS:
    Or(a=in[0], b=in[1], out=o1);
    Or(a=o1, b=in[2], out=o2);
    Or(a=o2, b=in[3], out=o3);
    Or(a=o3, b=in[4], out=o4);
    Or(a=o4, b=in[5], out=o5);
    Or(a=o5, b=in[6], out=o6);
    Or(a=o6, b=in[7], out=out);
}

Multi-Way/Multi-Bit Multiplexor

An \(m\)-way \(n\)-bit multiplexor selects one of \(m\) \(n\)- bit input buses and outputs it to a single \(n\)-bit output bus. The selection is specified by a set of \(k\) control bits, where \(k = log_2(m)\).

// File name: projects/01/Mux4Way16.hdl

// 4-way 16-bit multiplexor:
// out = a if sel == 00
//       b if sel == 01
//       c if sel == 10
//       d if sel == 11

CHIP Mux4Way16 {
    IN a[16], b[16], c[16], d[16], sel[2];
    OUT out[16];

    PARTS:
    Mux16(a=a, b=b, sel=sel[0], out=o1);
    Mux16(a=c, b=d, sel=sel[0], out=o2);
    Mux16(a=o1, b=o2, sel=sel[1], out=out);
}
// File name: projects/01/Mux8Way16.hdl

// 8-way 16-bit multiplexor:
// out = a if sel == 000
//       b if sel == 001
//       etc.
//       h if sel == 111

CHIP Mux8Way16 {
    IN a[16], b[16], c[16], d[16],
       e[16], f[16], g[16], h[16],
       sel[3];
    OUT out[16];

    PARTS:
    Mux4Way16(a=a, b=b, c=c, d=d, sel=sel[0..1], out=o1);
    Mux4Way16(a=e, b=f, c=g, d=h, sel=sel[0..1], out=o2);
    Mux16(a=o1, b=o2, sel=sel[2], out=out);
}

Multi-Way/Multi-Bit Demultiplexor

An \(m\)-way \(n\)-bit demultiplexor channels a single \(n\)-bit input into one of \(m\) possible \(n\)-bit outputs. The selection is specified by a set of \(k\) control bits, where \(k = log_2(m)\).

// File name: projects/01/DMux4Way.hdl

// 4-way demultiplexor:
// {a, b, c, d} = {in, 0, 0, 0} if sel == 00
//                {0, in, 0, 0} if sel == 01
//                {0, 0, in, 0} if sel == 10
//                {0, 0, 0, in} if sel == 11

CHIP DMux4Way {
    IN in, sel[2];
    OUT a, b, c, d;

    PARTS:
    DMux(in=in, sel=sel[1], a=o1, b=o2);
    DMux(in=o1, sel=sel[0], a=a, b=b);
    DMux(in=o2, sel=sel[0], a=c, b=d);
}
// File name: projects/01/DMux8Way.hdl

// 8-way demultiplexor:
// {a, b, c, d, e, f, g, h} = {in, 0, 0, 0, 0, 0, 0, 0} if sel == 000
//                            {0, in, 0, 0, 0, 0, 0, 0} if sel == 001
//                            etc.
//                            {0, 0, 0, 0, 0, 0, 0, in} if sel == 111

CHIP DMux8Way {
    IN in, sel[3];
    OUT a, b, c, d, e, f, g, h;

    PARTS:
    DMux(in=in, sel=sel[2], a=o1, b=o2);
    DMux4Way(in=o1, sel=sel[0..1], a=a, b=b, c=c, d=d);
    DMux4Way(in=o2, sel=sel[0..1], a=e, b=f, c=g, d=h);
}

标签:01,16,Mux,Logic,Nand2Tetris,bit,sel,out
来源: https://www.cnblogs.com/What-How-Why/p/15681489.html

本站声明: 1. iCode9 技术分享网(下文简称本站)提供的所有内容,仅供技术学习、探讨和分享;
2. 关于本站的所有留言、评论、转载及引用,纯属内容发起人的个人观点,与本站观点和立场无关;
3. 关于本站的所有言论和文字,纯属内容发起人的个人观点,与本站观点和立场无关;
4. 本站文章均是网友提供,不完全保证技术分享内容的完整性、准确性、时效性、风险性和版权归属;如您发现该文章侵犯了您的权益,可联系我们第一时间进行删除;
5. 本站为非盈利性的个人网站,所有内容不会用来进行牟利,也不会利用任何形式的广告来间接获益,纯粹是为了广大技术爱好者提供技术内容和技术思想的分享性交流网站。

专注分享技术,共同学习,共同进步。侵权联系[81616952@qq.com]

Copyright (C)ICode9.com, All Rights Reserved.

ICode9版权所有