ICode9

精准搜索请尝试: 精确搜索
首页 > 其他分享> 文章详细

机器学习基础——高数

2021-12-09 20:31:41  阅读:173  来源: 互联网

标签:underset right frac lim 学习 mathop 机器 高数 left


高等数学

1.导数定义:

导数和微分的概念

\(f'({{x}_{0}})=\underset{\Delta x\to 0}{\mathop{\lim }}\,\frac{f({{x}_{0}}+\Delta x)-f({{x}_{0}})}{\Delta x}\) (1)

或者:

\(f'({{x}_{0}})=\underset{x\to {{x}_{0}}}{\mathop{\lim }}\,\frac{f(x)-f({{x}_{0}})}{x-{{x}_{0}}}\) (2)

2.左右导数导数的几何意义和物理意义

函数\(f(x)\)在\(x_0\)处的左、右导数分别定义为:

左导数:\({{{f}'}_{-}}({{x}_{0}})=\underset{\Delta x\to {{0}^{-}}}{\mathop{\lim }}\,\frac{f({{x}_{0}}+\Delta x)-f({{x}_{0}})}{\Delta x}=\underset{x\to x_{0}^{-}}{\mathop{\lim }}\,\frac{f(x)-f({{x}_{0}})}{x-{{x}_{0}}},(x={{x}_{0}}+\Delta x)\)

右导数:\({{{f}'}_{+}}({{x}_{0}})=\underset{\Delta x\to {{0}^{+}}}{\mathop{\lim }}\,\frac{f({{x}_{0}}+\Delta x)-f({{x}_{0}})}{\Delta x}=\underset{x\to x_{0}^{+}}{\mathop{\lim }}\,\frac{f(x)-f({{x}_{0}})}{x-{{x}_{0}}}\)

3.函数的可导性与连续性之间的关系

Th1: 函数\(f(x)\)在\(x_0\)处可微\(\Leftrightarrow f(x)\)在\(x_0\)处可导

Th2: 若函数在点\(x_0\)处可导,则\(y=f(x)\)在点\(x_0\)处连续,反之则不成立。即函数连续不一定可导。

Th3: \({f}'({{x}_{0}})\)存在\(\Leftrightarrow {{{f}'}_{-}}({{x}_{0}})={{{f}'}_{+}}({{x}_{0}})\)

4.平面曲线的切线和法线

切线方程 : \(y-{{y}_{0}}=f'({{x}_{0}})(x-{{x}_{0}})\)

法线方程:\(y-{{y}_{0}}=-\frac{1}{f'({{x}_{0}})}(x-{{x}_{0}}),f'({{x}_{0}})\ne 0\)

5.四则运算法则

设函数\(u=u(x),v=v(x)\)]在点\(x\)可导则

(1) \((u\pm v{)}'={u}'\pm {v}'\) \(d(u\pm v)=du\pm dv\)

(2)\((uv{)}'=u{v}'+v{u}'\) \(d(uv)=udv+vdu\)

(3) \((\frac{u}{v}{)}'=\frac{v{u}'-u{v}'}{{{v}^{2}}}(v\ne 0)\) \(d(\frac{u}{v})=\frac{vdu-udv}{{{v}^{2}}}\)

6.基本导数与微分表

(1) \(y=c\)(常数) \({y}'=0\) \(dy=0\)

(2) \(y={{x}^{\alpha }}\)($\alpha $为实数) \({y}'=\alpha {{x}^{\alpha -1}}\) \(dy=\alpha {{x}^{\alpha -1}}dx\)

(3) \(y={{a}^{x}}\) \({y}'={{a}^{x}}\ln a\) \(dy={{a}^{x}}\ln adx\)
特例: \(({{{e}}^{x}}{)}'={{{e}}^{x}}\) \(d({{{e}}^{x}})={{{e}}^{x}}dx\)

(4) \(y={{\log }_{a}}x\) \({y}'=\frac{1}{x\ln a}\)

\(dy=\frac{1}{x\ln a}dx\)
特例:\(y=\ln x\) \((\ln x{)}'=\frac{1}{x}\) \(d(\ln x)=\frac{1}{x}dx\)

(5) \(y=\sin x\)

\({y}'=\cos x\) \(d(\sin x)=\cos xdx\)

(6) \(y=\cos x\)

\({y}'=-\sin x\) \(d(\cos x)=-\sin xdx\)

(7) \(y=\tan x\)

\({y}'=\frac{1}{{{\cos }^{2}}x}={{\sec }^{2}}x\) \(d(\tan x)={{\sec }^{2}}xdx\)

(8) \(y=\cot x\) \({y}'=-\frac{1}{{{\sin }^{2}}x}=-{{\csc }^{2}}x\) \(d(\cot x)=-{{\csc }^{2}}xdx\)

(9) \(y=\sec x\) \({y}'=\sec x\tan x\)

\(d(\sec x)=\sec x\tan xdx\)
(10) \(y=\csc x\) \({y}'=-\csc x\cot x\)

\(d(\csc x)=-\csc x\cot xdx\)
(11) \(y=\arcsin x\)

\({y}'=\frac{1}{\sqrt{1-{{x}^{2}}}}\)

\(d(\arcsin x)=\frac{1}{\sqrt{1-{{x}^{2}}}}dx\)
(12) \(y=\arccos x\)

\({y}'=-\frac{1}{\sqrt{1-{{x}^{2}}}}\) \(d(\arccos x)=-\frac{1}{\sqrt{1-{{x}^{2}}}}dx\)

(13) \(y=\arctan x\)

\({y}'=\frac{1}{1+{{x}^{2}}}\) \(d(\arctan x)=\frac{1}{1+{{x}^{2}}}dx\)

(14) \(y=\operatorname{arc}\cot x\)

\({y}'=-\frac{1}{1+{{x}^{2}}}\)

\(d(\operatorname{arc}\cot x)=-\frac{1}{1+{{x}^{2}}}dx\)
(15) \(y=shx\)

\({y}'=chx\) \(d(shx)=chxdx\)

(16) \(y=chx\)

\({y}'=shx\) \(d(chx)=shxdx\)

7.复合函数,反函数,隐函数以及参数方程所确定的函数的微分法

(1) 反函数的运算法则: 设\(y=f(x)\)在点\(x\)的某邻域内单调连续,在点\(x\)处可导且\({f}'(x)\ne 0\),则其反函数在点\(x\)所对应的\(y\)处可导,并且有\(\frac{dy}{dx}=\frac{1}{\frac{dx}{dy}}\)

(2) 复合函数的运算法则:若\(\mu =\varphi (x)\)在点\(x\)可导,而\(y=f(\mu )\)在对应点$\mu \((\)\mu =\varphi (x)\()可导,则复合函数\)y=f(\varphi (x))\(在点\)x\(可导,且\){y}'={f}'(\mu )\cdot {\varphi }'(x)$

(3) 隐函数导数\(\frac{dy}{dx}\)的求法一般有三种方法:

1)方程两边对\(x\)求导,要记住\(y\)是\(x\)的函数,则\(y\)的函数是\(x\)的复合函数.例如\(\frac{1}{y}\),\({{y}^{2}}\),\(ln y\),\({{{e}}^{y}}\)等均是\(x\)的复合函数.
对\(x\)求导应按复合函数连锁法则做.

2)公式法.由\(F(x,y)=0\)知 \(\frac{dy}{dx}=-\frac{{{{{F}'}}_{x}}(x,y)}{{{{{F}'}}_{y}}(x,y)}\),其中,\({{{F}'}_{x}}(x,y)\),
\({{{F}'}_{y}}(x,y)\)分别表示\(F(x,y)\)对\(x\)和\(y\)的偏导数

3)利用微分形式不变性

8.常用高阶导数公式

(1)\(({{a}^{x}}){{\,}^{(n)}}={{a}^{x}}{{\ln }^{n}}a\quad (a>{0})\quad \quad ({{{e}}^{x}}){{\,}^{(n)}}={e}{{\,}^{x}}\)

(2)\((\sin kx{)}{{\,}^{(n)}}={{k}^{n}}\sin (kx+n\cdot \frac{\pi }{{2}})\)

(3)\((\cos kx{)}{{\,}^{(n)}}={{k}^{n}}\cos (kx+n\cdot \frac{\pi }{{2}})\)

(4)\(({{x}^{m}}){{\,}^{(n)}}=m(m-1)\cdots (m-n+1){{x}^{m-n}}\)

(5)\((\ln x){{\,}^{(n)}}={{(-{1})}^{(n-{1})}}\frac{(n-{1})!}{{{x}^{n}}}\)

(6)莱布尼兹公式:若\(u(x)\,,v(x)\)均\(n\)阶可导,则
\({{(uv)}^{(n)}}=\sum\limits_{i={0}}^{n}{c_{n}^{i}{{u}^{(i)}}{{v}^{(n-i)}}}\),其中\({{u}^{({0})}}=u\),\({{v}^{({0})}}=v\)

9.微分中值定理,泰勒公式

Th1:(费马定理)

若函数\(f(x)\)满足条件:

(1)函数\(f(x)\)在\({{x}_{0}}\)的某邻域内有定义,并且在此邻域内恒有
\(f(x)\le f({{x}_{0}})\)或\(f(x)\ge f({{x}_{0}})\),

(2) \(f(x)\)在\({{x}_{0}}\)处可导,则有 \({f}'({{x}_{0}})=0\)

Th2:(罗尔定理)

设函数\(f(x)\)满足条件:

(1)在闭区间\([a,b]\)上连续;

(2)在\((a,b)\)内可导;

(3)\(f(a)=f(b)\);

则在\((a,b)\)内一存在个$\xi $,使 \({f}'(\xi )=0\)

Th3: (拉格朗日中值定理)

设函数\(f(x)\)满足条件:

(1)在\([a,b]\)上连续;

(2)在\((a,b)\)内可导;

则在\((a,b)\)内一存在个$\xi $,使 \(\frac{f(b)-f(a)}{b-a}={f}'(\xi )\)

Th4: (柯西中值定理)

设函数\(f(x)\),\(g(x)\)满足条件:
(1) 在\([a,b]\)上连续;

(2) 在\((a,b)\)内可导且\({f}'(x)\),\({g}'(x)\)均存在,且\({g}'(x)\ne 0\)

则在\((a,b)\)内存在一个$\xi $,使 \(\frac{f(b)-f(a)}{g(b)-g(a)}=\frac{{f}'(\xi )}{{g}'(\xi )}\)

10.洛必达法则

法则 Ⅰ (\(\frac{0}{0}\)型)

设函数\(f\left( x \right),g\left( x \right)\)

满足条件:

\(\underset{x\to {{x}_{0}}}{\mathop{\lim }}\,f\left( x \right)=0,\underset{x\to {{x}_{0}}}{\mathop{\lim }}\,g\left( x \right)=0\);

\(f\left( x \right),g\left( x \right)\)在\({{x}_{0}}\)的邻域内可导,(在\({{x}_{0}}\)处可除外)且\({g}'\left( x \right)\ne 0\);

\(\underset{x\to {{x}_{0}}}{\mathop{\lim }}\,\frac{{f}'\left( x \right)}{{g}'\left( x \right)}\)存在(或$\infty $)。

则:
\(\underset{x\to {{x}_{0}}}{\mathop{\lim }}\,\frac{f\left( x \right)}{g\left( x \right)}=\underset{x\to {{x}_{0}}}{\mathop{\lim }}\,\frac{{f}'\left( x \right)}{{g}'\left( x \right)}\)。
法则\({{I}'}\) (\(\frac{0}{0}\)型)

设函数\(f\left( x \right),g\left( x \right)\)

满足条件:

\(\underset{x\to \infty }{\mathop{\lim }}\,f\left(x \right)=0,\underset{x \to \infty}{\mathop{\lim}}\,g\left(x \right)=0\);

存在一个\(X>0\),当\(\left| x \right|>X\)时,\(f\left( x \right),g\left( x \right)\)可导,且\({g}'\left( x \right)\ne 0\);\(\underset{x\to {{x}_{0}}}{\mathop{\lim}}\,\frac{{f}'\left(x \right)}{{g}'\left(x \right)}\)存在(或$\infty $)。

则:
\(\underset{x\to {{x}_{0}}}{\mathop{\lim }}\,\frac{f\left( x \right)}{g\left( x \right)}=\underset{x\to {{x}_{0}}}{\mathop{\lim }}\,\frac{{f}'\left( x \right)}{{g}'\left( x \right)}\)

法则 Ⅱ(\(\frac{\infty }{\infty }\)型)

设函数\(f\left( x \right),g\left( x \right)\)满足条件:
\(\underset{x\to {{x}_{0}}}{\mathop{\lim }}\,f\left( x \right)=\infty ,\underset{x\to {{x}_{0}}}{\mathop{\lim }}\,g\left( x \right)=\infty\);

\(f\left( x \right),g\left( x \right)\)在\({{x}_{0}}\) 的邻域内可导(在\({{x}_{0}}\)处可除外)且\({g}'\left( x \right)\ne 0\);\(\underset{x\to {{x}_{0}}}{\mathop{\lim }}\,\frac{{f}'\left( x \right)}{{g}'\left( x \right)}\)存在(或\(\infty\))。

\(\underset{x\to {{x}_{0}}}{\mathop{\lim }}\,\frac{f\left( x \right)}{g\left( x \right)}=\underset{x\to {{x}_{0}}}{\mathop{\lim }}\,\frac{{f}'\left( x \right)}{{g}'\left( x \right)}.\)

同理法则\({I{I}'}\)(\(\frac{\infty }{\infty }\)型)仿法则\({{I}'}\)可写出。

11.泰勒公式

设函数\(f(x)\)在点\({{x}_{0}}\)处的某邻域内具有\(n+1\)阶导数,则对该邻域内异于\({{x}_{0}}\)的任意点\(x\),在\({{x}_{0}}\)与\(x\)之间至少存在
一个\(\xi\),使得:

\(f(x)=f({{x}_{0}})+{f}'({{x}_{0}})(x-{{x}_{0}})+\frac{1}{2!}{f}''({{x}_{0}}){{(x-{{x}_{0}})}^{2}}+\cdots\)

\(+\frac{{{f}^{(n)}}({{x}_{0}})}{n!}{{(x-{{x}_{0}})}^{n}}+{{R}_{n}}(x)\)

其中 \({{R}_{n}}(x)=\frac{{{f}^{(n+1)}}(\xi )}{(n+1)!}{{(x-{{x}_{0}})}^{n+1}}\)称为\(f(x)\)在点\({{x}_{0}}\)处的\(n\)阶泰勒余项。

令\({{x}_{0}}=0\),则\(n\)阶泰勒公式
\(f(x)=f(0)+{f}'(0)x+\frac{1}{2!}{f}''(0){{x}^{2}}+\cdots +\frac{{{f}^{(n)}}(0)}{n!}{{x}^{n}}+{{R}_{n}}(x)\)……(1)

其中 \({{R}_{n}}(x)=\frac{{{f}^{(n+1)}}(\xi )}{(n+1)!}{{x}^{n+1}}\),$\xi \(在 0 与\)x$之间.(1)式称为麦克劳林公式

常用五种函数在\({{x}_{0}}=0\)处的泰勒公式

(1) \({{{e}}^{x}}=1+x+\frac{1}{2!}{{x}^{2}}+\cdots +\frac{1}{n!}{{x}^{n}}+\frac{{{x}^{n+1}}}{(n+1)!}{{e}^{\xi }}\)

或 \(=1+x+\frac{1}{2!}{{x}^{2}}+\cdots +\frac{1}{n!}{{x}^{n}}+o({{x}^{n}})\)

(2) \(\sin x=x-\frac{1}{3!}{{x}^{3}}+\cdots +\frac{{{x}^{n}}}{n!}\sin \frac{n\pi }{2}+\frac{{{x}^{n+1}}}{(n+1)!}\sin (\xi +\frac{n+1}{2}\pi )\)

或 \(=x-\frac{1}{3!}{{x}^{3}}+\cdots +\frac{{{x}^{n}}}{n!}\sin \frac{n\pi }{2}+o({{x}^{n}})\)

(3) \(\cos x=1-\frac{1}{2!}{{x}^{2}}+\cdots +\frac{{{x}^{n}}}{n!}\cos \frac{n\pi }{2}+\frac{{{x}^{n+1}}}{(n+1)!}\cos (\xi +\frac{n+1}{2}\pi )\)

或 \(=1-\frac{1}{2!}{{x}^{2}}+\cdots +\frac{{{x}^{n}}}{n!}\cos \frac{n\pi }{2}+o({{x}^{n}})\)

(4) \(\ln (1+x)=x-\frac{1}{2}{{x}^{2}}+\frac{1}{3}{{x}^{3}}-\cdots +{{(-1)}^{n-1}}\frac{{{x}^{n}}}{n}+\frac{{{(-1)}^{n}}{{x}^{n+1}}}{(n+1){{(1+\xi )}^{n+1}}}\)

或 \(=x-\frac{1}{2}{{x}^{2}}+\frac{1}{3}{{x}^{3}}-\cdots +{{(-1)}^{n-1}}\frac{{{x}^{n}}}{n}+o({{x}^{n}})\)

(5) \({{(1+x)}^{m}}=1+mx+\frac{m(m-1)}{2!}{{x}^{2}}+\cdots +\frac{m(m-1)\cdots (m-n+1)}{n!}{{x}^{n}}\)
\(+\frac{m(m-1)\cdots (m-n+1)}{(n+1)!}{{x}^{n+1}}{{(1+\xi )}^{m-n-1}}\)

或 \({{(1+x)}^{m}}=1+mx+\frac{m(m-1)}{2!}{{x}^{2}}+\cdots\) \(+\frac{m(m-1)\cdots(m-n+1)}{n!}{{x}^{n}}+o({{x}^{n}})\)

12.函数单调性的判断

Th1:

设函数\(f(x)\)在\((a,b)\)区间内可导,如果对\(\forall x\in (a,b)\),都有\(f\,'(x)>0\)(或\(f\,'(x)<0\)),则函数\(f(x)\)在\((a,b)\)内是单调增加的(或单调减少)

Th2:

(取极值的必要条件)设函数\(f(x)\)在\({{x}_{0}}\)处可导,且在\({{x}_{0}}\)处取极值,则\(f\,'({{x}_{0}})=0\)。

Th3:

(取极值的第一充分条件)设函数\(f(x)\)在\({{x}_{0}}\)的某一邻域内可微,且\(f\,'({{x}_{0}})=0\)(或\(f(x)\)在\({{x}_{0}}\)处连续,但\(f\,'({{x}_{0}})\)不存在。)

(1)若当\(x\)经过\({{x}_{0}}\)时,\(f\,'(x)\)由“+”变“-”,则\(f({{x}_{0}})\)为极大值;

(2)若当\(x\)经过\({{x}_{0}}\)时,\(f\,'(x)\)由“-”变“+”,则\(f({{x}_{0}})\)为极小值;

(3)若\(f\,'(x)\)经过\(x={{x}_{0}}\)的两侧不变号,则\(f({{x}_{0}})\)不是极值。

Th4:

(取极值的第二充分条件)设\(f(x)\)在点\({{x}_{0}}\)处有\(f''(x)\ne 0\),且\(f\,'({{x}_{0}})=0\),则 当\(f'\,'({{x}_{0}})<0\)时,\(f({{x}_{0}})\)为极大值;
当\(f'\,'({{x}_{0}})>0\)时,\(f({{x}_{0}})\)为极小值。
注:如果\(f'\,'({{x}_{0}})<0\),此方法失效。

13.渐近线的求法

(1)水平渐近线 若\(\underset{x\to +\infty }{\mathop{\lim }}\,f(x)=b\),或\(\underset{x\to -\infty }{\mathop{\lim }}\,f(x)=b\),则

\(y=b\)称为函数\(y=f(x)\)的水平渐近线。

(2)铅直渐近线 若$\underset{x\to x_{0}^{-}}{\mathop{\lim }},f(x)=\infty \(,或\)\underset{x\to x_{0}^{+}}{\mathop{\lim }},f(x)=\infty $,则

\(x={{x}_{0}}\)称为\(y=f(x)\)的铅直渐近线。

(3)斜渐近线 若\(a=\underset{x\to \infty }{\mathop{\lim }}\,\frac{f(x)}{x},\quad b=\underset{x\to \infty }{\mathop{\lim }}\,[f(x)-ax]\),则
\(y=ax+b\)称为\(y=f(x)\)的斜渐近线。

14.函数凹凸性的判断

Th1: (凹凸性的判别定理)若在 I 上\(f''(x)<0\)(或\(f''(x)>0\)),则\(f(x)\)在 I 上是凸的(或凹的)。

Th2: (拐点的判别定理 1)若在\({{x}_{0}}\)处\(f''(x)=0\),(或\(f''(x)\)不存在),当\(x\)变动经过\({{x}_{0}}\)时,\(f''(x)\)变号,则\(({{x}_{0}},f({{x}_{0}}))\)为拐点。

Th3: (拐点的判别定理 2)设\(f(x)\)在\({{x}_{0}}\)点的某邻域内有三阶导数,且\(f''(x)=0\),\(f'''(x)\ne 0\),则\(({{x}_{0}},f({{x}_{0}}))\)为拐点。

15.弧微分

\(dS=\sqrt{1+y{{'}^{2}}}dx\)

16.曲率

曲线\(y=f(x)\)在点\((x,y)\)处的曲率\(k=\frac{\left| y'' \right|}{{{(1+y{{'}^{2}})}^{\tfrac{3}{2}}}}\)。
对于参数方程\(\left\{ \begin{align} & x=\varphi (t) \\ & y=\psi (t) \\ \end{align} \right.,\)\(k=\frac{\left| \varphi '(t)\psi ''(t)-\varphi ''(t)\psi '(t) \right|}{{{[\varphi {{'}^{2}}(t)+\psi {{'}^{2}}(t)]}^{\tfrac{3}{2}}}}\)。

17.曲率半径

曲线在点\(M\)处的曲率\(k(k\ne 0)\)与曲线在点\(M\)处的曲率半径$\rho \(有如下关系:\)\rho =\frac{1}{k}$。

标签:underset,right,frac,lim,学习,mathop,机器,高数,left
来源: https://www.cnblogs.com/young978/p/15669121.html

本站声明: 1. iCode9 技术分享网(下文简称本站)提供的所有内容,仅供技术学习、探讨和分享;
2. 关于本站的所有留言、评论、转载及引用,纯属内容发起人的个人观点,与本站观点和立场无关;
3. 关于本站的所有言论和文字,纯属内容发起人的个人观点,与本站观点和立场无关;
4. 本站文章均是网友提供,不完全保证技术分享内容的完整性、准确性、时效性、风险性和版权归属;如您发现该文章侵犯了您的权益,可联系我们第一时间进行删除;
5. 本站为非盈利性的个人网站,所有内容不会用来进行牟利,也不会利用任何形式的广告来间接获益,纯粹是为了广大技术爱好者提供技术内容和技术思想的分享性交流网站。

专注分享技术,共同学习,共同进步。侵权联系[81616952@qq.com]

Copyright (C)ICode9.com, All Rights Reserved.

ICode9版权所有