ICode9

精准搜索请尝试: 精确搜索
首页 > 其他分享> 文章详细

Numpy实现Regression

2021-11-26 14:02:28  阅读:181  来源: 互联网

标签:__ regularization degree 实现 self iterations Numpy Regression def


from __future__ import print_function, division
import numpy as np
import math
from mlfromscratch.utils import normalize, polynomial_features

class l1_regularization():
    """ Regularization for Lasso Regression """
    def __init__(self, alpha):
        self.alpha = alpha
    
    def __call__(self, w):
        return self.alpha * np.linalg.norm(w)

    def grad(self, w):
        return self.alpha * np.sign(w)

class l2_regularization():
    """ Regularization for Ridge Regression """
    def __init__(self, alpha):
        self.alpha = alpha
    
    def __call__(self, w):
        return self.alpha * 0.5 *  w.T.dot(w)

    def grad(self, w):
        return self.alpha * w

class l1_l2_regularization():
    """ Regularization for Elastic Net Regression """
    def __init__(self, alpha, l1_ratio=0.5):
        self.alpha = alpha
        self.l1_ratio = l1_ratio

    def __call__(self, w):
        l1_contr = self.l1_ratio * np.linalg.norm(w)
        l2_contr = (1 - self.l1_ratio) * 0.5 * w.T.dot(w) 
        return self.alpha * (l1_contr + l2_contr)

    def grad(self, w):
        l1_contr = self.l1_ratio * np.sign(w)
        l2_contr = (1 - self.l1_ratio) * w
        return self.alpha * (l1_contr + l2_contr) 

class Regression(object):
    """ Base regression model. Models the relationship between a scalar dependent variable y and the independent 
    variables X. 
    Parameters:
    -----------
    n_iterations: float
        The number of training iterations the algorithm will tune the weights for.
    learning_rate: float
        The step length that will be used when updating the weights.
    """
    def __init__(self, n_iterations, learning_rate):
        self.n_iterations = n_iterations
        self.learning_rate = learning_rate

    def initialize_weights(self, n_features):
        """ Initialize weights randomly [-1/N, 1/N] """
        limit = 1 / math.sqrt(n_features)
        self.w = np.random.uniform(-limit, limit, (n_features, ))

    def fit(self, X, y):
        # Insert constant ones for bias weights
        X = np.insert(X, 0, 1, axis=1)
        self.training_errors = []
        self.initialize_weights(n_features=X.shape[1])

        # Do gradient descent for n_iterations
        for i in range(self.n_iterations):
            y_pred = X.dot(self.w)
            # Calculate l2 loss
            mse = np.mean(0.5 * (y - y_pred)**2 + self.regularization(self.w))
            self.training_errors.append(mse)
            # Gradient of l2 loss w.r.t w
            grad_w = -(y - y_pred).dot(X) + self.regularization.grad(self.w)
            # Update the weights
            self.w -= self.learning_rate * grad_w

    def predict(self, X):
        # Insert constant ones for bias weights
        X = np.insert(X, 0, 1, axis=1)
        y_pred = X.dot(self.w)
        return y_pred

class LinearRegression(Regression):
    """Linear model.
    Parameters:
    -----------
    n_iterations: float
        The number of training iterations the algorithm will tune the weights for.
    learning_rate: float
        The step length that will be used when updating the weights.
    gradient_descent: boolean
        True or false depending if gradient descent should be used when training. If 
        false then we use batch optimization by least squares.
    """
    def __init__(self, n_iterations=100, learning_rate=0.001, gradient_descent=True):
        self.gradient_descent = gradient_descent
        # No regularization
        self.regularization = lambda x: 0
        self.regularization.grad = lambda x: 0
        super(LinearRegression, self).__init__(n_iterations=n_iterations,
                                            learning_rate=learning_rate)
    def fit(self, X, y):
        # If not gradient descent => Least squares approximation of w
        if not self.gradient_descent:
            # Insert constant ones for bias weights
            X = np.insert(X, 0, 1, axis=1)
            # Calculate weights by least squares (using Moore-Penrose pseudoinverse)
            U, S, V = np.linalg.svd(X.T.dot(X))
            S = np.diag(S)
            X_sq_reg_inv = V.dot(np.linalg.pinv(S)).dot(U.T)
            self.w = X_sq_reg_inv.dot(X.T).dot(y)
        else:
            super(LinearRegression, self).fit(X, y)

class LassoRegression(Regression):
    """Linear regression model with a regularization factor which does both variable selection 
    and regularization. Model that tries to balance the fit of the model with respect to the training 
    data and the complexity of the model. A large regularization factor with decreases the variance of 
    the model and do para.
    Parameters:
    -----------
    degree: int
        The degree of the polynomial that the independent variable X will be transformed to.
    reg_factor: float
        The factor that will determine the amount of regularization and feature
        shrinkage. 
    n_iterations: float
        The number of training iterations the algorithm will tune the weights for.
    learning_rate: float
        The step length that will be used when updating the weights.
    """
    def __init__(self, degree, reg_factor, n_iterations=3000, learning_rate=0.01):
        self.degree = degree
        self.regularization = l1_regularization(alpha=reg_factor)
        super(LassoRegression, self).__init__(n_iterations, 
                                            learning_rate)

    def fit(self, X, y):
        X = normalize(polynomial_features(X, degree=self.degree))
        super(LassoRegression, self).fit(X, y)

    def predict(self, X):
        X = normalize(polynomial_features(X, degree=self.degree))
        return super(LassoRegression, self).predict(X)

class PolynomialRegression(Regression):
    """Performs a non-linear transformation of the data before fitting the model
    and doing predictions which allows for doing non-linear regression.
    Parameters:
    -----------
    degree: int
        The degree of the polynomial that the independent variable X will be transformed to.
    n_iterations: float
        The number of training iterations the algorithm will tune the weights for.
    learning_rate: float
        The step length that will be used when updating the weights.
    """
    def __init__(self, degree, n_iterations=3000, learning_rate=0.001):
        self.degree = degree
        # No regularization
        self.regularization = lambda x: 0
        self.regularization.grad = lambda x: 0
        super(PolynomialRegression, self).__init__(n_iterations=n_iterations,
                                                learning_rate=learning_rate)

    def fit(self, X, y):
        X = polynomial_features(X, degree=self.degree)
        super(PolynomialRegression, self).fit(X, y)

    def predict(self, X):
        X = polynomial_features(X, degree=self.degree)
        return super(PolynomialRegression, self).predict(X)

class RidgeRegression(Regression):
    """Also referred to as Tikhonov regularization. Linear regression model with a regularization factor.
    Model that tries to balance the fit of the model with respect to the training data and the complexity
    of the model. A large regularization factor with decreases the variance of the model.
    Parameters:
    -----------
    reg_factor: float
        The factor that will determine the amount of regularization and feature
        shrinkage. 
    n_iterations: float
        The number of training iterations the algorithm will tune the weights for.
    learning_rate: float
        The step length that will be used when updating the weights.
    """
    def __init__(self, reg_factor, n_iterations=1000, learning_rate=0.001):
        self.regularization = l2_regularization(alpha=reg_factor)
        super(RidgeRegression, self).__init__(n_iterations, 
                                            learning_rate)

class PolynomialRidgeRegression(Regression):
    """Similar to regular ridge regression except that the data is transformed to allow
    for polynomial regression.
    Parameters:
    -----------
    degree: int
        The degree of the polynomial that the independent variable X will be transformed to.
    reg_factor: float
        The factor that will determine the amount of regularization and feature
        shrinkage. 
    n_iterations: float
        The number of training iterations the algorithm will tune the weights for.
    learning_rate: float
        The step length that will be used when updating the weights.
    """
    def __init__(self, degree, reg_factor, n_iterations=3000, learning_rate=0.01, gradient_descent=True):
        self.degree = degree
        self.regularization = l2_regularization(alpha=reg_factor)
        super(PolynomialRidgeRegression, self).__init__(n_iterations, 
                                                        learning_rate)

    def fit(self, X, y):
        X = normalize(polynomial_features(X, degree=self.degree))
        super(PolynomialRidgeRegression, self).fit(X, y)

    def predict(self, X):
        X = normalize(polynomial_features(X, degree=self.degree))
        return super(PolynomialRidgeRegression, self).predict(X)

class ElasticNet(Regression):
    """ Regression where a combination of l1 and l2 regularization are used. The
    ratio of their contributions are set with the 'l1_ratio' parameter.
    Parameters:
    -----------
    degree: int
        The degree of the polynomial that the independent variable X will be transformed to.
    reg_factor: float
        The factor that will determine the amount of regularization and feature
        shrinkage. 
    l1_ration: float
        Weighs the contribution of l1 and l2 regularization.
    n_iterations: float
        The number of training iterations the algorithm will tune the weights for.
    learning_rate: float
        The step length that will be used when updating the weights.
    """
    def __init__(self, degree=1, reg_factor=0.05, l1_ratio=0.5, n_iterations=3000, 
                learning_rate=0.01):
        self.degree = degree
        self.regularization = l1_l2_regularization(alpha=reg_factor, l1_ratio=l1_ratio)
        super(ElasticNet, self).__init__(n_iterations, 
                                        learning_rate)

    def fit(self, X, y):
        X = normalize(polynomial_features(X, degree=self.degree))
        super(ElasticNet, self).fit(X, y)

    def predict(self, X):
        X = normalize(polynomial_features(X, degree=self.degree))
        return super(ElasticNet, self).predict(X)

标签:__,regularization,degree,实现,self,iterations,Numpy,Regression,def
来源: https://blog.csdn.net/hhhhhhhhhhwwwwwwwwww/article/details/121558402

本站声明: 1. iCode9 技术分享网(下文简称本站)提供的所有内容,仅供技术学习、探讨和分享;
2. 关于本站的所有留言、评论、转载及引用,纯属内容发起人的个人观点,与本站观点和立场无关;
3. 关于本站的所有言论和文字,纯属内容发起人的个人观点,与本站观点和立场无关;
4. 本站文章均是网友提供,不完全保证技术分享内容的完整性、准确性、时效性、风险性和版权归属;如您发现该文章侵犯了您的权益,可联系我们第一时间进行删除;
5. 本站为非盈利性的个人网站,所有内容不会用来进行牟利,也不会利用任何形式的广告来间接获益,纯粹是为了广大技术爱好者提供技术内容和技术思想的分享性交流网站。

专注分享技术,共同学习,共同进步。侵权联系[81616952@qq.com]

Copyright (C)ICode9.com, All Rights Reserved.

ICode9版权所有