ICode9

精准搜索请尝试: 精确搜索
首页 > 其他分享> 文章详细

在pytorch上使用LSTM实现猫狗分类

2021-10-20 23:32:02  阅读:568  来源: 互联网

标签:dim plt loss 分类 print pytorch train test LSTM


    与RNN一样,输入也是三个维度,由于之前RNN先使用了CNN进行过滤,这次LSTM模型不使用CNN过滤,直接把所有向量放入训练。如下图,没有和RNN一样使用三层卷积层。

定义超参数

BATCH_SIZE = 32  # 每批处理的数据

DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

EPOCHS = 15  # 训练数据集的轮次

1. 最后一个epoch(第15个epoch)时候的训练集的损失率

2.最后一个epoch时候的训练准确率 

3. 总共15个epoch,每次epoch之后都测试一次,得到15次的loss 

4. 每次训练完epoch之后在测试集的准确度 

       LSTM模型准确度方面表现正常,但是loss太过抖动,需要调参数。比如学习率,loss函数,batch_size,激活函数,优化算法等。

#!/usr/bin/env python
# -#-coding:utf-8 -*-
# author:魏兴源
# datetime:2021/10/17  21:35:59
# software:PyCharm


"""
模型1:Pytorch LSTM 实现流程
    1.图片数据处理,加载数据集
    2.使得数据集可迭代(每次读取一个Batch)
    3.创建模型类
    4.初始化模型类
    5.初始化损失类
    6.训练模型
"""

# 1.加载库
import os
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import torchvision
from torch.utils.data import DataLoader
from torchvision import datasets, transforms
import matplotlib.pyplot as plt

# 2.定义超参数
BATCH_SIZE = 32  # 每批处理的数据
DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu')  # 放在cuda或者cpu上训练
EPOCHS = 15  # 训练数据集的轮次

# 3.构建pipeline,对图像做处理
pipeline = transforms.Compose([
    # 彩色图像转灰度图像num_output_channels默认1
    # transforms.Grayscale(num_output_channels=1),
    # 分辨率重置为256
    transforms.Resize(256),
    # 对加载的图像作归一化处理, 并裁剪为[224x224x3]大小的图像(因为这图片像素不一致直接统一)
    transforms.CenterCrop(224),
    # 将图片转成tensor
    transforms.ToTensor(),
    # 正则化,模型出现过拟合现象时,降低模型复杂度
    transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])

# 图片路径(训练图片和测试图片的)
base_dir_train = 'data/train'
base_dir_test = 'data/val'
# 打印一下训练图片猫狗各多少张图片
print('train dogs total images : %d' % (len(os.listdir(base_dir_train + '\\dog'))))
print('train cats total images : %d' % (len(os.listdir(base_dir_train + '\\cat'))))
print('test cats total images : %d' % (len(os.listdir(base_dir_test + '\\cat'))))
print('test dogs total images : %d' % (len(os.listdir(base_dir_test + '\\dog'))))

# 4. 加载数据集
"""
     训练集,猫是0,狗是1,ImageFolder方法自己分类的,关于ImageFolder详见: 
    https://blog.csdn.net/weixin_42147780/article/details/102683053?utm_medium=distribute.pc_relevant.none-task-blog-2%7Edefault%7ECTRLIST%7Edefault-2.no_search_link&depth_1-utm_source=distribute.pc_relevant.none-task-blog-2%7Edefault%7ECTRLIST%7Edefault-2.no_search_link
"""
train_dataset = datasets.ImageFolder(root=base_dir_train, transform=pipeline)
print("train_dataset=" + repr(train_dataset[1][0].size()))
print("train_dataset.class_to_idx=" + repr(train_dataset.class_to_idx))

# 创建训练集的可迭代对象,一个batch_size地读取数据,shuffle设为True表示随机打乱顺序读取
train_loader = DataLoader(train_dataset, batch_size=BATCH_SIZE, shuffle=True)

# 测试集
test_dataset = datasets.ImageFolder(root=base_dir_test, transform=pipeline)
# print(test_dataset)
print("test_dataset=" + repr(test_dataset[1][0].size()))
print("test_dataset.class_to_idx=" + repr(test_dataset.class_to_idx))
# 创建测试集的可迭代对象,一个batch_size地读取数据
test_loader = DataLoader(test_dataset, batch_size=BATCH_SIZE, shuffle=True)

# 获得一批测试集的数据
images, labels = next(iter(test_loader))
print("images shape", images.shape)
print("labels shape", labels.shape)


# 5.定义函数,显示一批图片
def imShow(inp, title=None):
    # tensor转成numpy,transpose转成(通道数,长,宽)
    inp = inp.numpy().transpose((1, 2, 0))
    mean = np.array([0.485, 0.456, 0.406])  # 均值
    std = np.array([0.229, 0.224, 0.225])  # 标准差
    inp = std * inp + mean
    inp = np.clip(inp, 0, 1)  # 像素值限制在0-1之间
    plt.imshow(inp)
    if title is not None:
        plt.title(title)
    plt.pause(0.001)


# 网格显示
out = torchvision.utils.make_grid(images)
imShow(out)


# 6.定义LSTM网络
class LSTM_Model(nn.Module):
    def __init__(self, input_dim, hidden_dim, layer_dim, output_dim):
        super(LSTM_Model, self).__init__()  # 初始化父类构造方法
        self.hidden_dim = hidden_dim
        self.layer_dim = layer_dim
        # 构建LSTM模型
        self.lstm = nn.LSTM(input_dim, hidden_dim, layer_dim, batch_first=True)
        # 全连接层
        self.fc = nn.Linear(hidden_dim, output_dim)

    def forward(self, x):
        # 初始化隐藏层状态全为0
        # (layer_dim,batch_size,hidden_dim)
        h0 = torch.zeros(self.layer_dim, x.size(0), self.hidden_dim).requires_grad_().to(DEVICE)
        # 初始化cell state
        c0 = torch.zeros(self.layer_dim, x.size(0), self.hidden_dim).requires_grad_().to(DEVICE)
        x = x.view(x.size(0), 1, -1)
        # 分离隐藏状态 避免梯度爆炸
        '''
            RNN只有一个状态,而LSTM有两个状态,所以两个状态都要分离
        '''
        out, (hn, cn) = self.lstm(x, (h0.detach(), c0.detach()))
        # 只需要最后一层隐层的状态
        out = self.fc(out[:, -1, :])
        return out


# 7.初始化模型
input_dim = 150528  # 输入维度(输入的节点数量)
hidden_dim = 50  # 隐藏层的维度(每个隐藏层的节点数)
layer_dim = 2  # 2层LSTM(隐藏层的数量 2层)
out_dim = 2  # 输出维度
rnn_model = LSTM_Model(input_dim, hidden_dim, layer_dim, out_dim)

# 8.输出模型参数信息
length = len(list(rnn_model.parameters()))
print(length)

# 9.输出模型参数信息
length = len(list(rnn_model.parameters()))
print(length)

# 优化器
# optimizer = optim.SGD(rnn_model.parameters(), lr=1e-3, momentum=0.9)
optimizer = optim.Adam(rnn_model.parameters(), lr=1e-3, betas=(0.9, 0.99))

# 损失函数,交叉熵损失函数
criterion = nn.CrossEntropyLoss()

# 把损失,准确度,迭代都记录出list,然后讲loss和准确度画出图像
sequence_dim = 53
train_loss_list = []
train_accuracy_list = []
train_iteration_list = []

test_loss_list = []
test_accuracy_list = []
test_iteration_list = []

iteration = 0
# for i, (imgs, labels) in enumerate(test_loader):
#     # print("imgs=" + repr(imgs))
#     print("labels=" + repr(labels))
#     print("i=" + repr(i))


# 训练
# """
for epoch in range(EPOCHS):
    # 用来显示训练的loss correct等
    train_correct = 0.0
    train_total = 0.0
    for i, (imgs, labels) in enumerate(train_loader):
        # 声明训练,loss等只能在train mode下进行运算
        rnn_model.train()
        # 把训练的数据集合都扔到对应的设备去
        # imgs = imgs.view(-1,1,sequence_dim, input_dim).requires_grad_().to(DEVICE)
        # print("imgs shape", imgs.shape)
        # print("imgs = ", imgs.data)
        imgs = imgs.to(DEVICE)
        labels = labels.to(DEVICE)
        # 防止梯度爆炸,梯度清零
        optimizer.zero_grad()
        # 前向传播
        rnn_model = rnn_model.cuda()  # 这里要从cuda()中取得,不然前面都放在cuda后面放在cpu,会报错,报“不在同一个设备的错误" Input and parameter tensors are not at the same device, found input tensor at cuda:0 and parameter tensor at cpu
        output = rnn_model(imgs)
        # print("RNN output shape", out.shape)
        # print("label shape", labels.shape)
        # 计算损失
        loss = criterion(output, labels)
        # 反向传播
        loss.backward()
        # 更新参数
        optimizer.step()
        # 计算训练时候的准确度
        train_predict = torch.max(output.data, 1)[1]
        if torch.cuda.is_available():
            train_correct += (train_predict.cuda() == labels.cuda()).sum()
        else:
            train_correct += (train_predict == labels).sum()
        train_total += labels.size(0)
        accuracy = train_correct / train_total * 100.0
        # 只画出最后一次epoch的
        if (epoch + 1) == EPOCHS:
            # 迭代计数器++
            iteration += 1
            train_accuracy_list.append(accuracy)
            train_iteration_list.append(iteration)
            train_loss_list.append(loss)
        # 打印信息
        print("Epoch :%d , Batch : %5d , Loss : %.8f,train_correct:%d,train_total:%d,accuracy:%.6f" % (
            epoch + 1, i + 1, loss.item(), train_correct, train_total, accuracy))
    print("==========================预测开始===========================")
    rnn_model.eval()
    # 验证accuracy
    correct = 0.0
    total = 0.0
    # 迭代测试集 获取数据 预测
    for j, (datas, targets) in enumerate(test_loader):
        datas = datas.to(DEVICE)
        targets = targets.to(DEVICE)
        # datas = datas.view(-1, sequence_dim, input_dim).requires_grad_().to(DEVICE)
        # datas = datas.reshape(datas.size(0), 1, -1)
        # 模型预测
        outputs = rnn_model(datas)
        # 防止梯度爆炸,梯度清零
        optimizer.zero_grad()
        # 获取测试概率最大值的下标
        predicted = torch.max(outputs.data, 1)[1]
        # 统计计算测试集合
        total += targets.size(0)
        if torch.cuda.is_available():
            # print(predicted.cuda() == targets.cuda())
            correct += (predicted.cuda() == targets.cuda()).sum()
            # print("predicted.cuda()=" + repr(predicted.cuda()))
            # print("labels.cuda()=" + repr(targets.cuda()))
        else:
            correct += (predicted == targets).sum()
    accuracy = correct / total * 100.0
    test_accuracy_list.append(accuracy)
    test_loss_list.append(loss.item())
    test_iteration_list.append(iteration)
    print("TEST--->loop : {}, Loss : {}, correct:{}, total:{}, Accuracy : {}".format(iteration, loss.item(),
                                                                                             correct,
                                                                                             total, accuracy))
# 可视化训练集loss
plt.figure(1)
plt.plot(train_iteration_list, train_loss_list)
plt.xlabel("number of iteration")
plt.ylabel("loss")
plt.title("RNN train loss")
plt.show()

# 可视化训练集accuracy
plt.figure(2)
plt.plot(train_iteration_list, train_accuracy_list)
plt.xlabel('number of iteration')
plt.ylabel('accuracy')
plt.title('LSTM train accuracy')
plt.show()

# 可视化测试集loss
plt.figure(3)
plt.plot(test_iteration_list, test_loss_list)
plt.xlabel('number of iteration')
plt.ylabel('loss')
plt.title('LSTM test loss')
plt.show()

# 可视化测试集accuracy
plt.figure(4)
plt.plot(test_iteration_list, test_accuracy_list)
plt.xlabel('number of iteration')
plt.ylabel('accuracy')
plt.title('LSTM test accuracy')
plt.show()

标签:dim,plt,loss,分类,print,pytorch,train,test,LSTM
来源: https://blog.csdn.net/Richard_Kim/article/details/120877133

本站声明: 1. iCode9 技术分享网(下文简称本站)提供的所有内容,仅供技术学习、探讨和分享;
2. 关于本站的所有留言、评论、转载及引用,纯属内容发起人的个人观点,与本站观点和立场无关;
3. 关于本站的所有言论和文字,纯属内容发起人的个人观点,与本站观点和立场无关;
4. 本站文章均是网友提供,不完全保证技术分享内容的完整性、准确性、时效性、风险性和版权归属;如您发现该文章侵犯了您的权益,可联系我们第一时间进行删除;
5. 本站为非盈利性的个人网站,所有内容不会用来进行牟利,也不会利用任何形式的广告来间接获益,纯粹是为了广大技术爱好者提供技术内容和技术思想的分享性交流网站。

专注分享技术,共同学习,共同进步。侵权联系[81616952@qq.com]

Copyright (C)ICode9.com, All Rights Reserved.

ICode9版权所有