ICode9

精准搜索请尝试: 精确搜索
首页 > 其他分享> 文章详细

简单了解 Interferometry 干涉测量技术

2021-10-11 15:33:10  阅读:177  来源: 互联网

标签:right text boldsymbol 测量 prior Interferometry hat 干涉 left


参考论文:Principles of image reconstruction in optical interferometry: tutorial;Image reconstruction in optical interferometry: benchmarking the regularization;

简单解释做了什么:The principle of interferometry is to recombine coherently the beams from two or more independent telescopes and measure the so-called complex visibilities of the fringe patterns produced by the interferences.

【两个望远镜收集的光进行recombine,对这两束光的干涉图案进行采集】

物理学基础:According to the van Cittert-Zernicke theorem, for an ideal interferometer, the complex visibility \(V_{j_{1}, j_{2}}(t)\) of the fringes produced by the interferences of the telescopes \(j_{1}\) and \(j_{2}\) at time \(t\) is proportional to the Fourier transform of the object brightness distribution \(\hat{I}\left(\boldsymbol{v}_{j_{1}, j_{2}}(t)\right)\) at spatial frequency \(\boldsymbol{v}_{j_{1}, j_{2}}(t)=\boldsymbol{B}_{j_{1}, j_{2}}^{\perp}(t) / \lambda\), where \(\lambda\) is the wavelength, and the socalled baseline \(\boldsymbol{B}_{j_{1}, j_{2}}^{\perp}(t)\) represents the separation between the two telescopes projected on a plane perpendicular to the line of sight .

【1.干涉图案 \(V_{j_{1}, j_{2}}(t)\) 和 \(\hat{I}\left(\boldsymbol{v}_{j_{1}, j_{2}}(t)\right)\)成正比;2. \(\hat{I}\left(\boldsymbol{v}_{j_{1}, j_{2}}(t)\right)\)是物体亮度信息的傅里叶变换在某一空间频率的分量(存疑);3.这一空间频率是\(\boldsymbol{v}_{j_{1}, j_{2}}(t)=\boldsymbol{B}_{j_{1}, j_{2}}^{\perp}(t) / \lambda\),其中\(\lambda\)是波长,baseline \(\boldsymbol{B}_{j_{1}, j_{2}}^{\perp}(t)\)是两个望远镜的距离在垂直于入射光的平面的投影。】

简写:

\[\begin{aligned} &V_{m} \stackrel{\text { def }}{=} V_{j_{1, m}, j_{2, m}}\left(t_{m}\right) \\ &\boldsymbol{v}_{m} \stackrel{\text { def }}{=} \boldsymbol{B}_{j_{1, m}, j_{2, m}}^{\perp}\left(t_{m}\right) / \lambda \end{aligned} \]

image model

\[I(\boldsymbol{\theta})=\sum_{n=1}^{N} x_{n} b_{n}(\boldsymbol{\theta}) \]

\(\boldsymbol{x}=\left\{x_{n}\right\}_{n=1}^{N}\) 是图像系数,比如pixel values,\(\left\{b_{n}(\boldsymbol{\theta})\right\}_{n=1}^{N}\)是选择的basis of functions比如每个pixel的response function。要重建的信息就是x。这样的话可以得到傅里叶变换的表达式:

\[\hat{I}(v)=\sum_{n} x_{n} \hat{b}_{n}(v)=\hat{b}(v) \sum_{n} x_{n} \mathrm{e}^{-\mathrm{i} 2 \pi \theta_{n} \cdot v} \]

把b也带入有:

\[\begin{aligned} \hat{I}_{m}=\hat{I}\left(\boldsymbol{v}_{m}\right)=\sum_{n} A_{m, n} x_{n}=(\mathbf{A} \cdot \boldsymbol{x})_{m} \\ A_{m, n}=\hat{b}_{n}\left(v_{m}\right)=\hat{b}\left(v_{m}\right) \mathrm{e}^{-\mathrm{i} 2 \pi \theta_{n} \cdot v_{m}} \end{aligned} \]

由于望远镜数量少+欠缺相位信息,这必然是一个病态的问题,因此需要先验的限制(正则化项)。

几种正则化方式:

1.Quadratic smoothness: \(f_{\text {prior }}(\boldsymbol{x})=\|\boldsymbol{x}-\mathbf{S} \cdot \boldsymbol{x}\|^{2}\),where S is a smoothing operator implemented via finite differences。

2.Compactness:\(f_{\text {prior }}(x)=\sum_{n} w_{n}^{\text {prior }} x_{n}^{2}\),to enforce compactness, the weights \(w_{n}^{\text {prior }}>0\) have to increase with the distance from the center of the image.(比如\(w_{n}^{\text {prior }}=\left\|\boldsymbol{\theta}_{n} / \Delta \theta\right\|^{2}\))

3.Total variation:\(f_{\text {prior }}(\boldsymbol{x})=\sum_{n_{1}, n_{2}} \sqrt{\left\|\nabla x_{n_{1}, n_{2}}\right\|^{2}+\epsilon^{2}}\) where \(\left\|\nabla x_{n_{1}, n_{2}}\right\|^{2}=\left(x_{n_{1}+1, n 2}-x_{n_{1}, n_{2}}\right)^{2}+\left(x_{n_{1}, n_{2}+1}-x_{n_{1}, n_{2}}\right)^{2}\)

4.Maximum entropy methods:\(f_{\text {prior }}(\boldsymbol{x})=-\sum_{n} h\left(x_{n} ; \bar{x}_{n}\right)\),文中写到了三种熵函数:\(\begin{array}{ll}\text { MEM-sqrt: } & h(x ; \bar{x})=\sqrt{x} \\ \text { MEM-log: } & h(x ; \bar{x})=\log (x) \\ \text { MEM-prior: } & h(x ; \bar{x})=x-\bar{x}-x \log (x / \bar{x})\end{array}\)

在有什么收获之前就已经看累了...最近找能看懂的论文的时间远大于看论文的时间了,感觉效率很低。收获应该算是,发现这里对病态问题的处理方法是变成一个最小化损失的问题,损失函数由原函数损失和正则函数一起组成,然后这篇论文略过了如何去最小化损失,专心讲regularization。

标签:right,text,boldsymbol,测量,prior,Interferometry,hat,干涉,left
来源: https://www.cnblogs.com/zyx45889/p/15393533.html

本站声明: 1. iCode9 技术分享网(下文简称本站)提供的所有内容,仅供技术学习、探讨和分享;
2. 关于本站的所有留言、评论、转载及引用,纯属内容发起人的个人观点,与本站观点和立场无关;
3. 关于本站的所有言论和文字,纯属内容发起人的个人观点,与本站观点和立场无关;
4. 本站文章均是网友提供,不完全保证技术分享内容的完整性、准确性、时效性、风险性和版权归属;如您发现该文章侵犯了您的权益,可联系我们第一时间进行删除;
5. 本站为非盈利性的个人网站,所有内容不会用来进行牟利,也不会利用任何形式的广告来间接获益,纯粹是为了广大技术爱好者提供技术内容和技术思想的分享性交流网站。

专注分享技术,共同学习,共同进步。侵权联系[81616952@qq.com]

Copyright (C)ICode9.com, All Rights Reserved.

ICode9版权所有