ICode9

精准搜索请尝试: 精确搜索
首页 > 其他分享> 文章详细

[atAGC054E]ZigZag Break

2021-10-02 22:34:57  阅读:231  来源: 互联网

标签:le frac int ZigZag Break choose fac atAGC054E mod


结论:(不妨假设$p_{1}<p_{n}$)$\{p_{i}\}$合法当且仅当$\exists 1\le i\le n-1$,使得$p_{1}\ge p_{i}$且$p_{i+1}\ge p_{n}$

充分性——

为了方便,在删除一个元素后,$i$和$n$也随之变化(指向原来的元素,若删除$p_{i}$或$p_{n}$会补充说明)

对$\{p_{1},p_{2},...,p_{i}\}$这个子问题不断删除(直至不能删除),显然最终必然是$p_{1}<p_{2}<...<p_{i}$(否则一定仍可以操作),同理可得后者也为$p_{i+1}>p_{i+2}>...>p_{n}$

如果$i\ge 3$或$i\le n-3$,不妨再删除$p_{i}$(并将$i$减小1)或删除$p_{i+1}$,重复此过程后即有$n-2\le i\le 2$,进而对$i$和$n$分类讨论,最终序列一定形如$\{2,1\},\{2,3,1\},\{1,3,2\}$或$\{2,1,4,3\}$,也即合法

必要性——

对$n$从小到大归纳,$n=2$时显然成立(取$i=1$即可)

考虑$n=k+1$时,反证若存在排列$\{p_{i}\}$合法但不存在$i$满足上述条件,假设其第一次删除的是$p_{i}$,由归纳假设删除后要存在$i$(满足上述条件),显然必然是$p_{1}\le p_{i-1}$且$p_{i+1}\ge p_{n}$

进而对$p_{i}$的值分类讨论,不难发现删除前也存在$i$,与假设矛盾,即得证

(类似地,在$p_{1}>p_{n}$时即要求$\exists 1\le i\le n-1$,使得$p_{1}\le p_{i}$且$p_{i+1}\le p_{n}$)

由于已经确定$p_{1}$,考虑枚举$p_{n}$(不妨仍假设$p_{1}<p_{n}$),并统计不合法的方案数——

将数分为三类,即$[1,p_{1}],(p_{1},p_{n}),[p_{n},n]$,那么即要求第三类数不接在第一类数的后面

初始序列中即有一个第一类数和第三类数(由于$n\ge 3$,这两个数一定不会相邻),并依次插入第2类、第1类和第3类数(注意顺序,并且要考虑初始的数),显然方案即
$$
(p_{n}-p_{1}-1)!\frac{(p_{n}-3)!}{(p_{n}-p_{1}-2)!}\frac{(n-p_{1}-2)!}{(p_{n}-p_{1}-2)!}=(p_{n}-p_{1}-1)\frac{(p_{n}-3)!(n-p_{1}-2)!}{(p_{n}-p_{1}-2)!}
$$

该式可以$o(1)$计算,但由于要枚举$p_{n}$,时间复杂度为$o(tn)$,无法通过

进一步的,枚举$k=p_{n}-p_{1}-2$​,原式即
$$
(n-p_{1}-2)!\sum_{k=0}^{n-p_{1}-2}\frac{(k+1)(k+p_{1}-1)!}{k!}\\=(n-p_{1}-2)!\left(\sum_{k=0}^{n-p_{1}-2}\frac{(k+p_{1}-1)!}{k!}+\sum_{k=0}^{n-p_{1}-2}\frac{(k+p_{1}-1)!}{(k-1)!}\right)\\=(n-p_{1}-2)!\left((p_{1}-1)!\sum_{k=0}^{n-p_{1}-2}{k+p_{1}-1\choose p_{1}-1}+p_{1}!\sum_{k=0}^{n-p_{1}-2}{k+p_{1}-1\choose p_{1}}\right)\\=(n-p_{1}-2)!\left((p_{1}-1)!{n-2\choose p_{1}}+p_{1}!{n-2\choose p_{1}+1}\right)
$$
类似地,可以得到$p_{n}<p_{1}$​的情况,答案为
$$
(p_{1}-3)!\left((n-p_{1})!{n-2\choose n-p_{1}+1}+(n-p_{1}+1)!{n-2\choose n-p_{1}+2}\right)
$$
时间复杂度为$o(t)$,可以通过

 1 #include<bits/stdc++.h>
 2 using namespace std;
 3 #define N 1000005
 4 #define mod 998244353
 5 #define ll long long
 6 int t,n,x,ans,fac[N],inv[N];
 7 int C(int n,int m){
 8     return (ll)fac[n]*inv[m]%mod*inv[n-m]%mod;
 9 }
10 int main(){
11     fac[0]=inv[0]=inv[1]=1; 
12     for(int i=1;i<N;i++)fac[i]=(ll)fac[i-1]*i%mod;
13     for(int i=2;i<N;i++)inv[i]=(ll)(mod-mod/i)*inv[mod%i]%mod;
14     for(int i=1;i<N;i++)inv[i]=(ll)inv[i-1]*inv[i]%mod;
15     scanf("%d",&t);
16     while (t--){
17         scanf("%d%d",&n,&x);
18         ans=fac[n-1];
19         if (x+2<=n){
20             int s=((ll)fac[x-1]*C(n-2,x)+(ll)fac[x]*C(n-2,x+1))%mod;
21             ans=(ans-(ll)fac[n-x-2]*s%mod+mod)%mod;
22         }
23         if (x>=3){
24             int s=((ll)fac[n-x]*C(n-2,n-x+1)+(ll)fac[n-x+1]*C(n-2,n-x+2))%mod;
25             ans=(ans-(ll)fac[x-3]*s%mod+mod)%mod;
26         }
27         printf("%d\n",ans);
28     }
29     return 0;
30 }
View Code

 

标签:le,frac,int,ZigZag,Break,choose,fac,atAGC054E,mod
来源: https://www.cnblogs.com/PYWBKTDA/p/15362876.html

本站声明: 1. iCode9 技术分享网(下文简称本站)提供的所有内容,仅供技术学习、探讨和分享;
2. 关于本站的所有留言、评论、转载及引用,纯属内容发起人的个人观点,与本站观点和立场无关;
3. 关于本站的所有言论和文字,纯属内容发起人的个人观点,与本站观点和立场无关;
4. 本站文章均是网友提供,不完全保证技术分享内容的完整性、准确性、时效性、风险性和版权归属;如您发现该文章侵犯了您的权益,可联系我们第一时间进行删除;
5. 本站为非盈利性的个人网站,所有内容不会用来进行牟利,也不会利用任何形式的广告来间接获益,纯粹是为了广大技术爱好者提供技术内容和技术思想的分享性交流网站。

专注分享技术,共同学习,共同进步。侵权联系[81616952@qq.com]

Copyright (C)ICode9.com, All Rights Reserved.

ICode9版权所有