ICode9

精准搜索请尝试: 精确搜索
首页 > 其他分享> 文章详细

使用Sklearn进行特征工程

2021-09-15 19:58:58  阅读:157  来源: 互联网

标签:1.0 工程 fit 特征 0.0 transform import data Sklearn


在这里插入图片描述

sklearn中的数据预处理和特征工程:


数据预处理

数据无量纲化

from sklearn.preprocessing import MinMaxScaler

data = [[-1, 2], [-0.5, 6], [0, 10], [1, 18]]

#不太熟悉numpy的小伙伴,能够判断data的结构吗?
#如果换成表是什么样子?

import pandas as pd

pd.DataFrame(data)
# 	0 	1
#0 	-1.0 	2
#1 	-0.5 	6
#2 	0.0 	10
#3 	1.0 	18

#实现归一化
scaler = MinMaxScaler() #实例化
scaler = scaler.fit(data) #fit,在这里本质是生成min(x)和max(x)
result = scaler.transform(data) #通过接口导出结果

result
#array([[0.  , 0.  ],
#       [0.25, 0.25],
#       [0.5 , 0.5 ],
#       [1.  , 1.  ]])
result_ = scaler.fit_transform(data) #训练和导出结果一步达成

scaler.inverse_transform(result) #将归一化后的结果逆转

#使用MinMaxScaler的参数feature_range实现将数据归一化到[0,1]以外的范围中
data = [[-1, 2], [-0.5, 6], [0, 10], [1, 18]]
scaler = MinMaxScaler(feature_range=[5,10]) #依然实例化

标准化:

from sklearn.preprocessing import StandardScaler

data = [[-1, 2], [-0.5, 6], [0, 10], [1, 18]]

scaler = StandardScaler() #实例化
scaler.fit(data) #fit,本质是生成均值和方差

scaler.mean_ #查看均值的属性mean_
#array([-0.125,  9.   ])
scaler.var_ #查看方差的属性var_
#array([ 0.546875, 35.      ])
x_std = scaler.transform(data) #通过接口导出结果

x_std.mean() #导出的结果是一个数组,用mean()查看均值
#0.0
x_std.std() #用std()查看方差
#1.0
scaler.fit_transform(data) #使用fit_transform(data)一步达成结果
scaler.inverse_transform(x_std) #使用inverse_transform逆转标准化

缺失值处理

class sklearn.impute.SimpleImputer (missing_values=nan, strategy=’mean’, fill_value=None, verbose=0,
copy=True)

import pandas as pd
from sklearn.impute import SimpleImputer

data = pd.read_csv("./Narrativedata.csv",index_col=0)

age = data.iloc[:,0]
Age = age.values.reshape(-1,1)#sklearn当中特征矩阵必须是二维

imp_mean = SimpleImputer() #实例化,默认均值填补
imp_median = SimpleImputer(strategy="median") #用中位数填补
imp_0 = SimpleImputer(strategy="constant",fill_value=0) #用0填补

imp_mean = imp_mean.fit_transform(Age) #fit_transform一步完成调取结果
imp_median = imp_median.fit_transform(Age)
imp_0 = imp_0.fit_transform(Age)

#在这里我们使用中位数填补Age
data.loc[:,"Age"] = imp_median

data.info()
#<class 'pandas.core.frame.DataFrame'>
#Int64Index: 891 entries, 0 to 890
#Data columns (total 4 columns):
 #   Column    Non-Null Count  Dtype  
#---  ------    --------------  -----  
# 0   Age       891 non-null    float64
# 1   Sex       891 non-null    object 
# 2   Embarked  889 non-null    object 
# 3   Survived  891 non-null    object 
#dtypes: float64(1), object(3)
#memory usage: 74.8+ KB

#使用众数填补Embarked
Embarked = data.loc[:,"Embarked"].values.reshape(-1,1)
imp_mode = SimpleImputer(strategy = "most_frequent")
data.loc[:,"Embarked"] = imp_mode.fit_transform(Embarked)
#用pandas和numpy进行填补
import pandas as pd

data = pd.read_csv("./Narrativedata.csv",index_col=0)

data.loc[:,"Age"] = data.loc[:,"Age"].fillna(data.loc[:,"Age"].median())
#.fillna 在DataFrame里面直接进行填补'

data.dropna(axis=0,inplace=True)
#.dropna(axis=0)删除所有有缺失值的行,.dropna(axis=1)删除所有有缺失值的列
#参数inplace,为True表示在原数据集上进行修改,为False表示生成一个复制对象,不修改原数据,默认False

离散数据处理:将文字型数据转换为数值型

1.preprocessing.LabelEncoder:标签专用,能够将分类转换为分类数值

from sklearn.preprocessing import LabelEncoder

y = data.iloc[:,-1] #要输入的是标签,不是特征矩阵,所以允许一维

le = LabelEncoder() #实例化
le = le.fit(y) #导入数据
label = le.transform(y)   #transform接口调取结果

le.classes_ #属性.classes_查看标签中究竟有多少类别
#array(['No', 'Unknown', 'Yes'], dtype=object)

data.iloc[:,-1] = label #让标签等于我们运行出来的结果

data.head()
# 	Age 	Sex 	Embarked 	Survived
#0 	22.0 	male 	S 	0
#1 	38.0 	female 	C 	2
#2 	26.0 	female 	S 	2
#3 	35.0 	female 	S 	2
#4 	35.0 	male 	S 	0

2.preprocessing.OrdinalEncoder:特征专用,能够将分类特征转换为分类数值

from sklearn.preprocessing import OrdinalEncoder

#接口categories_对应LabelEncoder的接口classes_,一模一样的功能
data_ = data.copy()

OrdinalEncoder().fit(data_.iloc[:,1:-1]).categories_
#[array(['female', 'male'], dtype=object), array(['C', 'Q', 'S'], dtype=object)]

data_.iloc[:,1:-1] = OrdinalEncoder().fit_transform(data_.iloc[:,1:-1])

data_.head()
# 	Age 	Sex 	Embarked 	Survived
#0 	22.0 	1.0 	2.0 	0
#1 	38.0 	0.0 	0.0 	2
#2 	26.0 	0.0 	2.0 	2
#3 	35.0 	0.0 	2.0 	2
#4 	35.0 	1.0 	2.0 	0

3.preprocessing.OneHotEncoder:独热编码,创建哑变量

from sklearn.preprocessing import OneHotEncoder

X = data.iloc[:,1:-1]

enc = OneHotEncoder(categories='auto').fit(X)
result = enc.transform(X).toarray()
#array([[0., 1., 0., 0., 1.],
#       [1., 0., 1., 0., 0.],
#       [1., 0., 0., 0., 1.],

#依然可以直接一步到位,但为了给大家展示模型属性,所以还是写成了三步
#OneHotEncoder(categories='auto').fit_transform(X).toarray()

enc.get_feature_names()
#array(['x0_female', 'x0_male', 'x1_C', 'x1_Q', 'x1_S'], dtype=object)

#axis=1,表示跨行进行合并,也就是将量表左右相连,如果是axis=0,就是将量表上下相连
newdata = pd.concat([data,pd.DataFrame(result)],axis=1)

# 	Age 	Sex 	Embarked 	Survived 	0 	1 	2 	3 	4
#0 	22.0 	male 	S 	0 	0.0 	1.0 	0.0 	0.0 	1.0
#1 	38.0 	female 	C 	2 	1.0 	0.0 	1.0 	0.0 	0.0
#2 	26.0 	female 	S 	2 	1.0 	0.0 	0.0 	0.0 	1.0
#3 	35.0 	female 	S 	2 	1.0 	0.0 	0.0 	0.0 	1.0
#4 	35.0 	male 	S 	0 	0.0 	1.0 	0.0 	0.0 	1.0

newdata.drop(["Sex","Embarked"],axis=1,inplace=True)

newdata.columns = ["Age","Survived","Female","Male","Embarked_C","Embarked_Q","Embarked_S"]

# 	Age 	Survived 	Female 	Male 	Embarked_C 	Embarked_Q 	Embarked_S
#0 	22.0 	0 	0.0 	1.0 	0.0 	0.0 	1.0
#1 	38.0 	2 	1.0 	0.0 	1.0 	0.0 	0.0
#2 	26.0 	2 	1.0 	0.0 	0.0 	0.0 	1.0
#3 	35.0 	2 	1.0 	0.0 	0.0 	0.0 	1.0
#4 	35.0 	0 	0.0 	1.0 	0.0 	0.0 	1.0

连续数据处理:二值化或分段

sklearn.preprocessing.Binarizer

from sklearn.preprocessing import Binarizer

data_2 = data.copy()

X = data_2.iloc[:,0].values.reshape(-1,1) #类为特征专用,所以不能使用一维数组
transformer = Binarizer(threshold=30).fit_transform(X) #将年龄中大于30的分类为1,小于等于30的分类为0
#array([0., 1., 0., 1., 1., 0., 1., 0., 0., 0., 0., 1., 0., 1., 0., 1., 0.,
#       0., 1., 0., 1., 1., 0., 0., 0., 1., 0., 0., 0., 0., 1., 0., 0., 1.,
#       0., 1., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0. ...]
preprocessing.KBinsDiscretizer

from sklearn.preprocessing import KBinsDiscretizer

X = data.iloc[:,0].values.reshape(-1,1) 
est = KBinsDiscretizer(n_bins=3, encode='ordinal', strategy='uniform')
est.fit_transform(X)

#查看转换后分的箱:变成了一列中的三箱
set(est.fit_transform(X).ravel())
#{0.0, 1.0, 2.0}

#uniform:表示等宽分箱
est = KBinsDiscretizer(n_bins=3, encode='onehot', strategy='uniform')
#查看转换后分的箱:变成了哑变量
est.fit_transform(X).toarray()
#array([[1., 0., 0.],
#       [0., 1., 0.],
#       [1., 0., 0.],

特征选择

Filter过滤法

方差过滤

import pandas as pd
from sklearn.feature_selection import VarianceThreshold

data = pd.read_csv("./digit recognizor.csv")

x = data.iloc[:,1:]
y = data.iloc[:,0]

#取除特征中方差为0的特征,即所有值都相等的特征
selector = VarianceThreshold() #实例化,不填参数默认方差为0
X_var0 = selector.fit_transform(x) #获取删除不合格特征之后的新特征矩阵

X_var0.shape
#(42000, 784)-》 (42000, 708)

设置阈值来削减特征:

import numpy as np

X.var().values
#pixel0      0.000000
#pixel1      0.000000
#pixel2      0.000000 ...

np.median(X.var().values)
#1352.2867031797243

#以方差的中位数为阈值,可以削减一半的特征
X_fsvar = VarianceThreshold(np.median(X.var().values)).fit_transform(X)

X_fsvar.shape
#(42000, 392)

#若特征是伯努利随机变量,假设p=0.8,即二分类特征中某种分类占到80%以上的时候删除特征
X_bvar = VarianceThreshold(.8 * (1 - .8)).fit_transform(x)
X_bvar.shape
#(42000, 685)

相关性过滤

卡方过滤

from sklearn.ensemble import RandomForestClassifier as RFC
from sklearn.model_selection import cross_val_score
from sklearn.feature_selection import SelectKBest
from sklearn.feature_selection import chi2

#假设在这里我一直我需要300个特征
X_fschi = SelectKBest(chi2, k=300).fit_transform(X_fsvar, y)
X_fschi.shape
#(42000, 300)

#验证模型效果
cross_val_score(RFC(n_estimators=10,random_state=0),X_fschi,y,cv=5).mean()
#0.9344761904761905

选取超参数K

#绘制学习曲线
%matplotlib inline
import matplotlib.pyplot as plt

score = []
#range(350,200,-10)  [350, 340, 330, 320, 310, 300, 290, 280, 270, 260, 250, 240, 230, 220, 210]
for i in range(350,200,-10):
    X_fschi = SelectKBest(chi2, k=i).fit_transform(X_fsvar, y)
    once = cross_val_score(RFC(n_estimators=10,random_state=0),X_fschi,y,cv=5).mean()
    score.append(once)
    
plt.plot(range(350,200,-10),score)
plt.show()

在这里插入图片描述

chivalue, pvalues_chi = chi2(X_fsvar,y)
chivalue #卡方值
#array([ 945664.84392643, 1244766.05139164, 1554872.30384525,
#       1834161.78305343, 1903618.94085294, 1845226.62427198,
#       1602117.23307537,  708535.17489837,  974050.20513718 ...]

pvalues_chi #P值
#array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
#       0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
#       0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0....]

#k取多少?我们想要消除所有p值大于设定值,比如0.05或0.01的特征:
k = chivalue.shape[0] - (pvalues_chi > 0.05).sum()
#392

#X_fschi = SelectKBest(chi2, k=填写具体的k).fit_transform(X_fsvar, y)
#cross_val_score(RFC(n_estimators=10,random_state=0),X_fschi,y,cv=5).mean()

F检验

from sklearn.feature_selection import f_classif

F, pvalues_f = f_classif(X_fsvar,y)

F
#array([1.12236836, 1.69713477, 0.19542821, ..., 3.03522216, 3.73716286, 0.56568448])

pvalues_f
#array([0.28966539, 0.19296363, 0.65853243, ..., 0.08178345, 0.05349733,0.45215625])

k = F.shape[0] - (pvalues_f > 0.05).sum()
#392

互信息法

from sklearn.feature_selection import mutual_info_classif as MIC

result = MIC(X_fsvar,y)

k = result.shape[0] - sum(result <= 0)
#392
#X_fsmic = SelectKBest(MIC, k=填写具体的k).fit_transform(X_fsvar, y)
#cross_val_score(RFC(n_estimators=10,random_state=0),X_fsmic,y,cv=5).mean()

Embedded嵌入法

class sklearn.feature_selection.SelectFromModel (estimator, threshold=None, prefit=False, norm_order=1,
max_features=None)

from sklearn.feature_selection import SelectFromModel
from sklearn.ensemble import RandomForestClassifier as RFC

RFC_ = RFC(n_estimators =10,random_state=0)
X_embedded = SelectFromModel(RFC_,threshold=0.005).fit_transform(X,y)
#在这里我只想取出来有限的特征。0.005这个阈值对于有780个特征的数据来说,是非常高的阈值,因为平均每个特征只能够分到大约0.001的feature_importances_

X_embedded.shape
#模型的维度明显被降低了
#(42000, 47)

#同样的,我们也可以画学习曲线来找最佳阈值
#======【TIME WARNING:10 mins】======#
import numpy as np
import matplotlib.pyplot as plt

RFC_.fit(X,y).feature_importances_
#array([0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
#       0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
#       0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00...]

threshold = np.linspace(0,(RFC_.fit(X,y).feature_importances_).max(),20)
score = []
for i in threshold:
    X_embedded = SelectFromModel(RFC_,threshold=i).fit_transform(X,y)
    once = cross_val_score(RFC_,X_embedded,y,cv=5).mean()
    score.append(once)
plt.plot(threshold,score)
plt.show()

在这里插入图片描述

Wrapper包装法

class sklearn.feature_selection.RFE (estimator, n_features_to_select=None, step=1, verbose=0)

from sklearn.feature_selection import RFE

RFC_ = RFC(n_estimators =10,random_state=0)
selector = RFE(RFC_, n_features_to_select=340, step=50).fit(X, y)

selector.support_.sum()
#340

selector.ranking_
#array([10,  9,  8,  7,  6,  6,  6,  6,  6,  6,  6,  6,  6,  6,  6,  6,  6,
#        6,  6,  6,  6,  6,  6,  6,  6,  6,  6,  6,  6,  6,  7,  7,  6,  6,
#        5,  6,  5,  6,  6,  6,  6,  6,  6,  6,  6,  6,  6,  7,  6,  7,  7,

X_wrapper = selector.transform(X)
cross_val_score(RFC_,X_wrapper,y,cv=5).mean()
#0.9379761904761905
score = []
for i in range(1,751,50):
    X_wrapper = RFE(RFC_,n_features_to_select=i, step=50).fit_transform(x,y)
    once = cross_val_score(RFC_,X_wrapper,y,cv=5).mean()
    score.append(once)
plt.figure(figsize=[20,5])
plt.plot(range(1,751,50),score)
plt.xticks(range(1,751,50))
plt.show()

标签:1.0,工程,fit,特征,0.0,transform,import,data,Sklearn
来源: https://blog.csdn.net/qq_41481924/article/details/120315561

本站声明: 1. iCode9 技术分享网(下文简称本站)提供的所有内容,仅供技术学习、探讨和分享;
2. 关于本站的所有留言、评论、转载及引用,纯属内容发起人的个人观点,与本站观点和立场无关;
3. 关于本站的所有言论和文字,纯属内容发起人的个人观点,与本站观点和立场无关;
4. 本站文章均是网友提供,不完全保证技术分享内容的完整性、准确性、时效性、风险性和版权归属;如您发现该文章侵犯了您的权益,可联系我们第一时间进行删除;
5. 本站为非盈利性的个人网站,所有内容不会用来进行牟利,也不会利用任何形式的广告来间接获益,纯粹是为了广大技术爱好者提供技术内容和技术思想的分享性交流网站。

专注分享技术,共同学习,共同进步。侵权联系[81616952@qq.com]

Copyright (C)ICode9.com, All Rights Reserved.

ICode9版权所有