ICode9

精准搜索请尝试: 精确搜索
首页 > 其他分享> 文章详细

关于pytorch下GAN loss的backward和step等注意事项

2021-08-09 04:32:21  阅读:222  来源: 互联网

标签:loss tensor weight Checkpoint GAN pytorch detach grad


首先不妨假设最简单的一种情况:

假设$G$和$D$的损失函数:

那么计算梯度有:

 

 

 

第一种正确的方式:

import torch
from torch import nn


def set_requires_grad(net: nn.Module, mode=True):
    for p in net.parameters():
        p.requires_grad_(mode)


print(f"Pytorch version: {torch.__version__} \n")

X = torch.ones(size=[1, 1, 1, 1]).requires_grad_(False)

G = nn.Conv2d(1, 1, kernel_size=1, stride=1, padding=0, bias=False)
G.weight.data.fill_(0.5)
G_optim = torch.optim.SGD(G.parameters(), lr=1.0)

D = nn.Conv2d(1, 1, kernel_size=1, stride=1, padding=0, bias=False)
D.weight.data.fill_(0.7)
D_optim = torch.optim.SGD(D.parameters(), lr=1.0)print(f"Init grad: {G.weight.grad} {D.weight.grad}")
print(f"Init weight: {G.weight.detach()} {D.weight.detach()} \n")

# Zero gradient of 2 layers.
G_optim.zero_grad()
D_optim.zero_grad()

# Forward pass.
Y = G(X)

# Calculate D loss.
D_loss = D(Y.detach()) ** 2

# Calculate G loss.
G_loss = D(Y) ** 2

# Backward D loss.
D_loss.backward(retain_graph=True)

print(f"Checkpoint 1 grad: {G.weight.grad} {D.weight.grad}")
print(f"Checkpoint 1 weight: {G.weight.detach()} {D.weight.detach()} \n")

# Backward G loss.
set_requires_grad(D, False)  # Turn off D's grad to avoid redundant gradient accumulation on D.
G_loss.backward()
set_requires_grad(D, True)

print(f"Checkpoint 2 grad: {G.weight.grad} {D.weight.grad}")
print(f"Checkpoint 2 weight: {G.weight.detach()} {D.weight.detach()} \n")

# Update G.
G_optim.step()

print(f"Checkpoint 3 grad: {G.weight.grad} {D.weight.grad}")
print(f"Checkpoint 3 weight: {G.weight.detach()} {D.weight.detach()} \n")

# Update D.
D_optim.step()

print(f"Checkpoint 4 grad: {G.weight.grad} {D.weight.grad}")
print(f"Checkpoint 4 weight: {G.weight.detach()} {D.weight.detach()} \n")

 

运行结果:

Pytorch version: 1.9.0 

Init grad: None None
Init weight: tensor([[[[0.5000]]]]) tensor([[[[0.7000]]]]) 

Checkpoint 1 grad: None tensor([[[[0.3500]]]])
Checkpoint 1 weight: tensor([[[[0.5000]]]]) tensor([[[[0.7000]]]]) 

Checkpoint 2 grad: tensor([[[[0.4900]]]]) tensor([[[[0.3500]]]])
Checkpoint 2 weight: tensor([[[[0.5000]]]]) tensor([[[[0.7000]]]]) 

Checkpoint 3 grad: tensor([[[[0.4900]]]]) tensor([[[[0.3500]]]])
Checkpoint 3 weight: tensor([[[[0.0100]]]]) tensor([[[[0.7000]]]]) 

Checkpoint 4 grad: tensor([[[[0.4900]]]]) tensor([[[[0.3500]]]])
Checkpoint 4 weight: tensor([[[[0.0100]]]]) tensor([[[[0.3500]]]]) 

 

分析:

此时,$x = 1.0, y = 0.5, z = 0.7, \theta_G = 0.5, \theta_D = 0.7$,

首先checkpoint 1处,D loss的梯度反传到D网络上得到了 $2 y^2 \cdot \theta_D = 2 \times 0.25 \times 0.7 = 0.35$,没有反传到G网络。

其次checkpoint 2处,G loss的梯度反传,D网络梯度不受影响(因为所有网络参数的requires_grad := False),在G网络上得到了 $2 \times 0.5 \times 0.7^2 \times 1.0 = 0.49$。注意,这里的D网络参数 $\theta_D = 0.7$,因为尽管此时D loss已经反传,但是没有D optimizer的step()就还没有更新D网络。

最后checkpoint 3和4处,就是两个optimizer的step()分别更新G网络和D网络,这两个step()之间的先后顺序对最终的网络更新结果没什么影响。

 

注意,这种做法更新G网络时,对应的是更新前的D网络。

 

在Pytorch 1.2上的结果:

Pytorch version: 1.2.0 

Init grad: None None
Init weight: tensor([[[[0.5000]]]]) tensor([[[[0.7000]]]]) 

Checkpoint 1 grad: None tensor([[[[0.3500]]]])
Checkpoint 1 weight: tensor([[[[0.5000]]]]) tensor([[[[0.7000]]]]) 

Checkpoint 2 grad: tensor([[[[0.4900]]]]) tensor([[[[0.3500]]]])
Checkpoint 2 weight: tensor([[[[0.5000]]]]) tensor([[[[0.7000]]]]) 

Checkpoint 3 grad: tensor([[[[0.4900]]]]) tensor([[[[0.3500]]]])
Checkpoint 3 weight: tensor([[[[0.0100]]]]) tensor([[[[0.7000]]]]) 

Checkpoint 4 grad: tensor([[[[0.4900]]]]) tensor([[[[0.3500]]]])
Checkpoint 4 weight: tensor([[[[0.0100]]]]) tensor([[[[0.3500]]]]) 

可以看到,也是一样的。

 

错误的做法:

在 G_loss.backward() 前后不进行对D网络的网络参数的requires_grad的关和开,使得G loss反传了多余的梯度到D网络上。

 


 

第二种正确的方式:

import torch
from torch import nn


print(f"Pytorch version: {torch.__version__} \n") X = torch.ones(size=[1, 1, 1, 1]).requires_grad_(False) G = nn.Conv2d(1, 1, kernel_size=1, stride=1, padding=0, bias=False) G.weight.data.fill_(0.5) G_optim = torch.optim.SGD(G.parameters(), lr=1.0) D = nn.Conv2d(1, 1, kernel_size=1, stride=1, padding=0, bias=False) D.weight.data.fill_(0.7) D_optim = torch.optim.SGD(D.parameters(), lr=1.0) print(f"Init grad: {G.weight.grad} {D.weight.grad}") print(f"Init weight: {G.weight.detach()} {D.weight.detach()} \n") # Forward pass. Y = G(X) # Zero gradient of D. D_optim.zero_grad() # Calculate D loss. D_loss = D(Y.detach()) ** 2 # Backward D loss. D_loss.backward() # Update D. D_optim.step() print(f"Checkpoint 1 grad: {G.weight.grad} {D.weight.grad}") print(f"Checkpoint 1 weight: {G.weight.detach()} {D.weight.detach()} \n") # Zero gradient of G. G_optim.zero_grad() # Calculate G loss. G_loss = D(Y) ** 2 # Backward G loss. G_loss.backward() # Update G. G_optim.step() print(f"Checkpoint 2 grad: {G.weight.grad} {D.weight.grad}") print(f"Checkpoint 2 weight: {G.weight.detach()} {D.weight.detach()} \n")

 

分析:

这种方式就很明了,更新D网络和更新G网络完全分开。

此时,$x = 1.0, y = 0.5, z = 0.7, \theta_G = 0.5, \theta_D = 0.7$,

首先checkpoint 1处,D loss的梯度反传到D网络上得到了 $2 y^2 \cdot \theta_D = 2 \times 0.25 \times 0.7 = 0.35$,没有反传到G网络。

其次checkpoint 2处,G loss的梯度同时反传到了G网络和D网络上,但是由于只更新G网络,D网络上的梯度会在下一个iteration中被zero_grad()清零。G网络上的梯度是 $2 \times 0.5 \times 0.35^2 \times 1.0 = 0.1225$,注意此时的D网络参数已经从 $0.7$ 更新为 $0.7 - 1.0 \times 0.35 = 0.35$(梯度下降:原参数减去学习率乘梯度,得新参数)。

 

注意,这种做法更新G网络时,对应的是已经更新后的D网络。事实上,我认为这种做法更正确,同时在逻辑上也更加清晰、更好理解。

 

运行结果:

Pytorch version: 1.9.0 

Init grad: None None
Init weight: tensor([[[[0.5000]]]]) tensor([[[[0.7000]]]]) 

Checkpoint 1 grad: None tensor([[[[0.3500]]]])
Checkpoint 1 weight: tensor([[[[0.5000]]]]) tensor([[[[0.3500]]]]) 

Checkpoint 2 grad: tensor([[[[0.1225]]]]) tensor([[[[0.5250]]]])
Checkpoint 2 weight: tensor([[[[0.3775]]]]) tensor([[[[0.3500]]]]) 
Pytorch version: 1.2.0 

Init grad: None None
Init weight: tensor([[[[0.5000]]]]) tensor([[[[0.7000]]]]) 

Checkpoint 1 grad: None tensor([[[[0.3500]]]])
Checkpoint 1 weight: tensor([[[[0.5000]]]]) tensor([[[[0.3500]]]]) 

Checkpoint 2 grad: tensor([[[[0.1225]]]]) tensor([[[[0.5250]]]])
Checkpoint 2 weight: tensor([[[[0.3775]]]]) tensor([[[[0.3500]]]]) 

 


 

 

一种错误的方式:

import torch
from torch import nn


print(f"Pytorch version: {torch.__version__} \n")

X = torch.ones(size=[1, 1, 1, 1]).requires_grad_(False)

G = nn.Conv2d(1, 1, kernel_size=1, stride=1, padding=0, bias=False)
G.weight.data.fill_(0.5)
G_optim = torch.optim.SGD(G.parameters(), lr=1.0)

D = nn.Conv2d(1, 1, kernel_size=1, stride=1, padding=0, bias=False)
D.weight.data.fill_(0.7)
D_optim = torch.optim.SGD(D.parameters(), lr=1.0)

print(f"Init grad: {G.weight.grad} {D.weight.grad}")
print(f"Init weight: {G.weight.detach()} {D.weight.detach()} \n")

# Forward pass.
Y = G(X)

# Zero gradient of G & D.
G_optim.zero_grad()
D_optim.zero_grad()

# Calculate D loss.
D_loss = D(Y.detach()) ** 2

# Calculate G loss.
G_loss = D(Y) ** 2

# Backward D loss.
D_loss.backward()

# Update D.
D_optim.step()

print(f"Checkpoint 1 grad: {G.weight.grad} {D.weight.grad}")
print(f"Checkpoint 1 weight: {G.weight.detach()} {D.weight.detach()} \n")

# Backward G loss.
G_loss.backward()

# Update G.
G_optim.step()

print(f"Checkpoint 2 grad: {G.weight.grad} {D.weight.grad}")
print(f"Checkpoint 2 weight: {G.weight.detach()} {D.weight.detach()} \n")

 

运行结果:

Pytorch version: 1.2.0 

Init grad: None None
Init weight: tensor([[[[0.5000]]]]) tensor([[[[0.7000]]]]) 

Checkpoint 1 grad: None tensor([[[[0.3500]]]])
Checkpoint 1 weight: tensor([[[[0.5000]]]]) tensor([[[[0.3500]]]]) 

Checkpoint 2 grad: tensor([[[[0.2450]]]]) tensor([[[[0.7000]]]])
Checkpoint 2 weight: tensor([[[[0.2550]]]]) tensor([[[[0.3500]]]]) 
Pytorch version: 1.9.0 

Init grad: None None
Init weight: tensor([[[[0.5000]]]]) tensor([[[[0.7000]]]]) 

Checkpoint 1 grad: None tensor([[[[0.3500]]]])
Checkpoint 1 weight: tensor([[[[0.5000]]]]) tensor([[[[0.3500]]]]) 

Traceback (most recent call last):
  File "D:/Program/PycharmProjects/Test/test.py", line 65, in <module>
    G_loss.backward()
  File "D:\Program\Anaconda\envs\py38_torch19\lib\site-packages\torch\_tensor.py", line 255, in backward
    torch.autograd.backward(self, gradient, retain_graph, create_graph, inputs=inputs)
  File "D:\Program\Anaconda\envs\py38_torch19\lib\site-packages\torch\autograd\__init__.py", line 147, in backward
    Variable._execution_engine.run_backward(
RuntimeError: one of the variables needed for gradient computation has been modified by an inplace operation: [torch.FloatTensor [1, 1, 1, 1]] is at version 2; expected version 1 instead. Hint: enable anomaly detection to find the operation that failed to compute its gradient, with torch.autograd.set_detect_anomaly(True).

 

分析:

这种做法的错误核心就在于,你在计算G loss时(前向传播时)使用的是更新前的D网络,但是你在G loss反向传播时D网络已经变成了更新后的,

这个错误在较低版本(1.2.0)的Pytorch上并没有报错,我们可以看到它在计算G网络的梯度时,似乎用了更新前后的 $\theta_D$ 相乘 $2 \times 0.5 \times (0.7 \times 0.35) \times 1.0 = 0.245$,而非单纯更新前的 ${\theta_D}^2 = 0.7^2$,或者单纯更新后的 ${\theta_D}^2 = 0.35^2$.

至于在较高版本(1.9.0)的Pytorch上则直接报错了,估计是因为step()更新了D网络之后,G loss对应的计算图被破坏了,因此直接报了一个 "inplace operation" 错误。

 

因此,使用低版本的Pytorch时千万一定要注意这种比较隐蔽的错误写法!!!!

标签:loss,tensor,weight,Checkpoint,GAN,pytorch,detach,grad
来源: https://www.cnblogs.com/dilthey/p/15116941.html

本站声明: 1. iCode9 技术分享网(下文简称本站)提供的所有内容,仅供技术学习、探讨和分享;
2. 关于本站的所有留言、评论、转载及引用,纯属内容发起人的个人观点,与本站观点和立场无关;
3. 关于本站的所有言论和文字,纯属内容发起人的个人观点,与本站观点和立场无关;
4. 本站文章均是网友提供,不完全保证技术分享内容的完整性、准确性、时效性、风险性和版权归属;如您发现该文章侵犯了您的权益,可联系我们第一时间进行删除;
5. 本站为非盈利性的个人网站,所有内容不会用来进行牟利,也不会利用任何形式的广告来间接获益,纯粹是为了广大技术爱好者提供技术内容和技术思想的分享性交流网站。

专注分享技术,共同学习,共同进步。侵权联系[81616952@qq.com]

Copyright (C)ICode9.com, All Rights Reserved.

ICode9版权所有