ICode9

精准搜索请尝试: 精确搜索
首页 > 数据库> 文章详细

Redis 核心技术与实战

2022-03-27 23:31:46  阅读:319  来源: 互联网

标签:实战 主库 缓存 快照 核心技术 Redis 哨兵 从库


Redis 核心技术与实战

 

 

目录

 

开篇词 | 这样学 Redis,才能技高一筹

Redis 知识全景图

Redis 知识全景图

Redis 问题画像图

Redis 问题画像图

01 | 基本架构:一个键值数据库包含什么?

从 SimpleKV 到 Redis

从 SimpleKV 到 Redis

02 | 数据结构:快速的Redis有哪些慢操作?

Redis 数据类型和底层数据结构的对应关系

Redis 数据类型和底层数据结构的对应关系

键和值用什么结构组织?

全局哈希表

全局哈希表

为什么哈希表操作变慢了?

哈希表的哈希冲突

哈希表的哈希冲突

渐进式 rehash

渐进式 rehash

有哪些底层数据结构?

集合类型的底层数据结构主要有 5 种:整数数组、双向链表、哈希表、压缩列表和跳表。

压缩列表的查找

压缩列表的查找

跳表的快速查找过程

跳表的快速查找过程

数据结构的时间复杂度

数据结构的时间复杂度

不同操作的复杂度

  • 单元素操作是基础;
  • 范围操作非常耗时;
  • 统计操作通常高效;
  • 例外情况只有几个。

03 | 高性能IO模型:为什么单线程Redis能那么快?

为什么单线程的 Redis 能那么快?

Redis 是单线程,主要是指 Redis 的网络 IO 和键值对读写是由一个线程来完成的,这也是 Redis 对外提供键值存储服务的主要流程。但 Redis 的其他功能,比如持久化、异步删除、集群数据同步等,其实是由额外的线程执行的。

Redis 为什么用单线程?

多线程的开销

线程数与系统吞吐率

线程数与系统吞吐率

一个关键的瓶颈在于,系统中通常会存在被多线程同时访问的共享资源,比如一个共享的数据结构。当有多个线程要修改这个共享资源时,为了保证共享资源的正确性,就需要有额外的机制进行保证,而这个额外的机制,就会带来额外的开销。

多线程编程模式面临的共享资源的并发访问控制问题。

并发访问控制一直是多线程开发中的一个难点问题,如果没有精细的设计,比如说,只是简单地采用一个粗粒度互斥锁,就会出现不理想的结果:即使增加了线程,大部分线程也在等待获取访问共享资源的互斥锁,并行变串行,系统吞吐率并没有随着线程的增加而增加。

而且,采用多线程开发一般会引入同步原语来保护共享资源的并发访问,这也会降低系统代码的易调试性和可维护性。为了避免这些问题,Redis 直接采用了单线程模式。

单线程 Redis 为什么那么快?

通常来说,单线程的处理能力要比多线程差很多,但是 Redis 却能使用单线程模型达到每秒数十万级别的处理能力,这是为什么呢?

一方面,Redis 的大部分操作在内存上完成,再加上它采用了高效的数据结构,例如哈希表和跳表,这是它实现高性能的一个重要原因。另一方面,就是 Redis 采用了多路复用机制,使其在网络 IO 操作中能并发处理大量的客户端请求,实现高吞吐率。

基本 IO 模型与阻塞点

Redis基本 IO 模型

Redis基本 IO 模型

非阻塞模式

Redis 套接字类型与非阻塞设置

Redis 套接字类型与非阻塞设置

基于多路复用的高性能 I/O 模型

Linux 中的 IO 多路复用机制是指一个线程处理多个 IO 流,就是我们经常听到的 select/epoll 机制。简单来说,在 Redis 只运行单线程的情况下,该机制允许内核中,同时存在多个监听套接字和已连接套接字。内核会一直监听这些套接字上的连接请求或数据请求。一旦有请求到达,就会交给 Redis 线程处理,这就实现了一个 Redis 线程处理多个 IO 流的效果。

基于多路复用的高性能 I/O 模型

为了在请求到达时能通知到 Redis 线程,select/epoll 提供了基于事件的回调机制,即针对不同事件的发生,调用相应的处理函数。

这些事件会被放进一个事件队列,Redis 单线程对该事件队列不断进行处理。这样一来,Redis 无需一直轮询是否有请求实际发生,这就可以避免造成 CPU 资源浪费。同时,Redis 在对事件队列中的事件进行处理时,会调用相应的处理函数,这就实现了基于事件的回调。因为 Redis 一直在对事件队列进行处理,所以能及时响应客户端请求,提升 Redis 的响应性能。

04 | AOF日志:宕机了,Redis如何避免数据丢失?

AOF 日志是如何实现的?

写后日志

Redis AOF操作过程

Redis AOF操作过程

AOF 里记录的是 Redis 收到的每一条命令,这些命令是以文本形式保存的。

Redis AOF 日志内容

但是,为了避免额外的检查开销,Redis 在向 AOF 里面记录日志的时候,并不会先去对这些命令进行语法检查。

写后日志这种方式,就是先让系统执行命令,只有命令能执行成功,才会被记录到日志中,否则,系统就会直接向客户端报错。所以,Redis 使用写后日志这一方式的一大好处是,可以避免出现记录错误命令的情况。

除此之外,AOF 还有一个好处:它是在命令执行后才记录日志,所以不会阻塞当前的写操作。

不过,AOF 也有两个潜在的风险。

首先,如果刚执行完一个命令,还没有来得及记日志就宕机了,那么这个命令和相应的数据就有丢失的风险。

其次,AOF 虽然避免了对当前命令的阻塞,但可能会给下一个操作带来阻塞风险。

这两个风险都是和 AOF 写回磁盘的时机相关的。

三种写回策略

AOF 配置项 appendfsync 的三个可选值。

  • Always,同步写回:每个写命令执行完,立马同步地将日志写回磁盘;
  • Everysec,每秒写回:每个写命令执行完,只是先把日志写到 AOF 文件的内存缓冲区,每隔一秒把缓冲区中的内容写入磁盘;
  • No,操作系统控制的写回:每个写命令执行完,只是先把日志写到 AOF 文件的内存缓冲区,由操作系统决定何时将缓冲区内容写回磁盘。

针对避免主线程阻塞和减少数据丢失问题,这三种写回策略都无法做到两全其美。

  • “同步写回”可以做到基本不丢数据,但是它在每一个写命令后都有一个慢速的落盘操作,不可避免地会影响主线程性能;
  • 虽然“操作系统控制的写回”在写完缓冲区后,就可以继续执行后续的命令,但是落盘的时机已经不在 Redis 手中了,只要 AOF 记录没有写回磁盘,一旦宕机对应的数据就丢失了;
  • “每秒写回”采用一秒写回一次的频率,避免了“同步写回”的性能开销,虽然减少了对系统性能的影响,但是如果发生宕机,上一秒内未落盘的命令操作仍然会丢失。所以,这只能算是,在避免影响主线程性能和避免数据丢失两者间取了个折中。

三种策略的写回时机,以及优缺点

三种策略的写回时机,以及优缺点

想要获得高性能,就选择 No 策略;如果想要得到高可靠性保证,就选择 Always 策略;如果允许数据有一点丢失,又希望性能别受太大影响的话,那么就选择 Everysec 策略。

AOF 是以文件的形式在记录接收到的所有写命令。随着接收的写命令越来越多,AOF 文件会越来越大。

小心 AOF 文件过大带来的性能问题。

  • 一是,文件系统本身对文件大小有限制,无法保存过大的文件;
  • 二是,如果文件太大,之后再往里面追加命令记录的话,效率也会变低;
  • 三是,如果发生宕机,AOF 中记录的命令要一个个被重新执行,用于故障恢复,如果日志文件太大,整个恢复过程就会非常缓慢,这就会影响到 Redis 的正常使用。

日志文件太大了怎么办?

AOF 重写机制就是在重写时,Redis 根据数据库的现状创建一个新的 AOF 文件,也就是说,读取数据库中的所有键值对,然后对每一个键值对用一条命令记录它的写入。

为什么重写机制可以把日志文件变小呢?

实际上,重写机制具有“多变一”功能。所谓的“多变一”,也就是说,旧日志文件中的多条命令,在重写后的新日志中变成了一条命令。

AOF 文件是以追加的方式,逐一记录接收到的写命令的。当一个键值对被多条写命令反复修改时,AOF 文件会记录相应的多条命令。但是,在重写的时候,是根据这个键值对当前的最新状态,为它生成对应的写入命令。

AOF 重写减少日志大小

AOF 重写减少日志大小

AOF 重写会阻塞吗?

和 AOF 日志由主线程写回不同,重写过程是由后台子进程 bgrewriteaof 来完成的,这也是为了避免阻塞主线程,导致数据库性能下降。

重写的过程:“一个拷贝,两处日志”。

“一个拷贝”就是指,每次执行重写时,主线程 fork 出后台的 bgrewriteaof 子进程。此时,fork 会把主线程的内存拷贝一份给 bgrewriteaof 子进程,这里面就包含了数据库的最新数据。然后,bgrewriteaof 子进程就可以在不影响主线程的情况下,逐一把拷贝的数据写成操作,记入重写日志。

“两处日志”又是什么呢?因为主线程未阻塞,仍然可以处理新来的操作。此时,如果有写操作,第一处日志就是指正在使用的 AOF 日志,Redis 会把这个操作写到它的缓冲区。这样一来,即使宕机了,这个 AOF 日志的操作仍然是齐全的,可以用于恢复。而第二处日志,就是指新的 AOF 重写日志。这个操作也会被写到重写日志的缓冲区。这样,重写日志也不会丢失最新的操作。等到拷贝数据的所有操作记录重写完成后,重写日志记录的这些最新操作也会写入新的 AOF 文件,以保证数据库最新状态的记录。此时,我们就可以用新的 AOF 文件替代旧文件了。

AOF 非阻塞的重写过程

AOF 非阻塞的重写过程

05 | 内存快照:宕机后,Redis如何实现快速恢复?

另一种持久化方法:内存快照。所谓内存快照,就是指内存中的数据在某一个时刻的状态记录。

和 AOF 相比,RDB 记录的是某一时刻的数据,并不是操作,所以,在做数据恢复时,我们可以直接把 RDB 文件读入内存,很快地完成恢复。

考虑两个关键问题:

  • 对哪些数据做快照?这关系到快照的执行效率问题;
  • 做快照时,数据还能被增删改吗?这关系到 Redis 是否被阻塞,能否同时正常处理请求。

给哪些内存数据做快照?

Redis 的数据都在内存中,为了提供所有数据的可靠性保证,它执行的是全量快照,也就是说,把内存中的所有数据都记录到磁盘中,这就类似于给 100 个人拍合影,把每一个人都拍进照片里。这样做的好处是,一次性记录了所有数据,一个都不少。

针对任何操作,我们都会提一个灵魂之问:“它会阻塞主线程吗?”

RDB 文件的生成是否会阻塞主线程?

Redis 提供了两个命令来生成 RDB 文件,分别是 save 和 bgsave。

  • save:在主线程中执行,会导致阻塞;
  • bgsave:创建一个子进程,专门用于写入 RDB 文件,避免了主线程的阻塞,这也是 Redis RDB 文件生成的默认配置。

可以通过 bgsave 命令来执行全量快照,这既提供了数据的可靠性保证,也避免了对 Redis 的性能影响。

快照时数据能修改吗?

一个常见的误区,bgsave 避免阻塞和正常处理写操作并不是一回事。此时,主线程的确没有阻塞,可以正常接收请求,但是,为了保证快照完整性,它只能处理读操作,因为不能修改正在执行快照的数据。

为了快照而暂停写操作,肯定是不能接受的。所以这个时候,Redis 就会借助操作系统提供的写时复制技术(Copy-On-Write, COW),在执行快照的同时,正常处理写操作。

简单来说,bgsave 子进程是由主线程 fork 生成的,可以共享主线程的所有内存数据。bgsave 子进程运行后,开始读取主线程的内存数据,并把它们写入 RDB 文件。

此时,如果主线程对这些数据也都是读操作(例如图中的键值对 A),那么,主线程和 bgsave 子进程相互不影响。但是,如果主线程要修改一块数据(例如图中的键值对 C),那么,这块数据就会被复制一份,生成该数据的副本。然后,bgsave 子进程会把这个副本数据写入 RDB 文件,而在这个过程中,主线程仍然可以直接修改原来的数据。

写时复制机制保证快照期间数据可修改

写时复制机制保证快照期间数据可修改

这既保证了快照的完整性,也允许主线程同时对数据进行修改,避免了对正常业务的影响。

可以每秒做一次快照吗?

快照机制下的数据丢失

快照机制下的数据丢失

虽然 bgsave 执行时不阻塞主线程,但是,如果频繁地执行全量快照,也会带来两方面的开销。

  • 一方面,频繁将全量数据写入磁盘,会给磁盘带来很大压力,多个快照竞争有限的磁盘带宽,前一个快照还没有做完,后一个又开始做了,容易造成恶性循环。
  • 另一方面,bgsave 子进程需要通过 fork 操作从主线程创建出来。虽然,子进程在创建后不会再阻塞主线程,但是,fork 这个创建过程本身会阻塞主线程,而且主线程的内存越大,阻塞时间越长。如果频繁 fork 出 bgsave 子进程,这就会频繁阻塞主线程了。

增量快照,就是指,做了一次全量快照后,后续的快照只对修改的数据进行快照记录,这样可以避免每次全量快照的开销。

增量快照的前提是,我们需要记住哪些数据被修改了。

增量快照示意图

增量快照示意图

虽然跟 AOF 相比,快照的恢复速度快,但是,快照的频率不好把握,如果频率太低,两次快照间一旦宕机,就可能有比较多的数据丢失。如果频率太高,又会产生额外开销,那么,还有什么方法既能利用 RDB 的快速恢复,又能以较小的开销做到尽量少丢数据呢?

Redis 4.0 中提出了一个混合使用 AOF 日志和内存快照的方法。简单来说,内存快照以一定的频率执行,在两次快照之间,使用 AOF 日志记录这期间的所有命令操作。

这样一来,快照不用很频繁地执行,这就避免了频繁 fork 对主线程的影响。而且,AOF 日志也只用记录两次快照间的操作,也就是说,不需要记录所有操作了,因此,就不会出现文件过大的情况了,也可以避免重写开销。

内存快照和 AOF 混合使用

内存快照和 AOF 混合使用

06 | 数据同步:主从库如何实现数据一致?

Redis 具有高可靠性,又是什么意思呢?

其实,这里有两层含义:一是数据尽量少丢失,二是服务尽量少中断。AOF 和 RDB 保证了前者,而对于后者,Redis 的做法就是增加副本冗余量,将一份数据同时保存在多个实例上。即使有一个实例出现了故障,需要过一段时间才能恢复,其他实例也可以对外提供服务,不会影响业务使用。

多实例保存同一份数据,听起来好像很不错,但是,我们必须要考虑一个问题:这么多副本,它们之间的数据如何保持一致呢?数据读写操作可以发给所有的实例吗?

Redis 提供了主从库模式,以保证数据副本的一致,主从库之间采用的是读写分离的方式。

  • 读操作:主库、从库都可以接收;写操作:首先到主库执行,然后,主库将写操作同步给从库。
  • 写操作:首先到主库执行,然后,主库将写操作同步给从库。

Redis 主从库和读写分离

Redis 主从库和读写分离

那么,为什么要采用读写分离的方式呢?

主从库模式一旦采用了读写分离,所有数据的修改只会在主库上进行,不用协调三个实例。主库有了最新的数据后,会同步给从库,这样,主从库的数据就是一致的。

那么,主从库同步是如何完成的呢?主库数据是一次性传给从库,还是分批同步?要是主从库间的网络断连了,数据还能保持一致吗?

主从库间如何进行第一次同步?

当我们启动多个 Redis 实例的时候,它们相互之间就可以通过 replicaof(Redis 5.0 之前使用 slaveof)命令形成主库和从库的关系,之后会按照三个阶段完成数据的第一次同步。

主从库第一次同步的流程

主从库第一次同步的流程

第一阶段是主从库间建立连接、协商同步的过程,主要是为全量复制做准备。在这一步,从库和主库建立起连接,并告诉主库即将进行同步,主库确认回复后,主从库间就可以开始同步了。

FULLRESYNC 响应表示第一次复制采用的全量复制,也就是说,主库会把当前所有的数据都复制给从库。

在第二阶段,主库将所有数据同步给从库。从库收到数据后,在本地完成数据加载。这个过程依赖于内存快照生成的 RDB 文件。

最后,也就是第三个阶段,主库会把第二阶段执行过程中新收到的写命令,再发送给从库。

主从级联模式分担全量复制时的主库压力

通过分析主从库间第一次数据同步的过程,你可以看到,一次全量复制中,对于主库来说,需要完成两个耗时的操作:生成 RDB 文件和传输 RDB 文件。

如果从库数量很多,而且都要和主库进行全量复制的话,就会导致主库忙于 fork 子进程生成 RDB 文件,进行数据全量同步。fork 这个操作会阻塞主线程处理正常请求,从而导致主库响应应用程序的请求速度变慢。此外,传输 RDB 文件也会占用主库的网络带宽,同样会给主库的资源使用带来压力。那么,有没有好的解决方法可以分担主库压力呢?

“主 - 从 - 从”模式

可以通过“主 - 从 - 从”模式将主库生成 RDB 和传输 RDB 的压力,以级联的方式分散到从库上。

简单来说,我们在部署主从集群的时候,可以手动选择一个从库(比如选择内存资源配置较高的从库),用于级联其他的从库。然后,我们可以再选择一些从库(例如三分之一的从库),在这些从库上执行如下命令,让它们和刚才所选的从库,建立起主从关系。

这样一来,这些从库就会知道,在进行同步时,不用再和主库进行交互了,只要和级联的从库进行写操作同步就行了,这就可以减轻主库上的压力。

级联的“主-从-从”模式

级联的“主-从-从”模式

一旦主从库完成了全量复制,它们之间就会一直维护一个网络连接,主库会通过这个连接将后续陆续收到的命令操作再同步给从库,这个过程也称为基于长连接的命令传播,可以避免频繁建立连接的开销。

主从库间网络断了怎么办?

网络断了之后,主从库会采用增量复制的方式继续同步。

全量复制是同步所有数据,而增量复制只会把主从库网络断连期间主库收到的命令,同步给从库。

那么,增量复制时,主从库之间具体是怎么保持同步的呢?

当主从库断连后,主库会把断连期间收到的写操作命令,写入 replication buffer,同时也会把这些操作命令也写入 repl_backlog_buffer 这个缓冲区。repl_backlog_buffer 是一个环形缓冲区,主库会记录自己写到的位置,从库则会记录自己已经读到的位置。

Redis repl_backlog_buffer 的使用

Redis repl_backlog_buffer 的使用

Redis 增量复制流程

Redis 增量复制流程

不过,有一个地方我要强调一下,因为 repl_backlog_buffer 是一个环形缓冲区,所以在缓冲区写满后,主库会继续写入,此时,就会覆盖掉之前写入的操作。如果从库的读取速度比较慢,就有可能导致从库还未读取的操作被主库新写的操作覆盖了,这会导致主从库间的数据不一致。

因此,我们要想办法避免这一情况,一般而言,我们可以调整 repl_backlog_size 这个参数。这个参数和所需的缓冲空间大小有关。缓冲空间的计算公式是:缓冲空间大小 = 主库写入命令速度 * 操作大小 - 主从库间网络传输命令速度 * 操作大小。在实际应用中,考虑到可能存在一些突发的请求压力,我们通常需要把这个缓冲空间扩大一倍,即 repl_backlog_size = 缓冲空间大小 * 2,这也就是 repl_backlog_size 的最终值。

Redis 的主从库同步的基本原理,总结来说,有三种模式:全量复制、基于长连接的命令传播,以及增量复制。

07 | 哨兵机制:主库挂了,如何不间断服务?

主库故障后从库无法服务写操作

主库故障后从库无法服务写操作

涉及到三个问题:

  1. 主库真的挂了吗?
  2. 该选择哪个从库作为主库?
  3. 怎么把新主库的相关信息通知给从库和客户端呢?

哨兵机制的基本流程

哨兵其实就是一个运行在特殊模式下的 Redis 进程,主从库实例运行的同时,它也在运行。哨兵主要负责的就是三个任务:监控、选主(选择主库)和通知。

监控是指哨兵进程在运行时,周期性地给所有的主从库发送 PING 命令,检测它们是否仍然在线运行。如果从库没有在规定时间内响应哨兵的 PING 命令,哨兵就会把它标记为“下线状态”;同样,如果主库也没有在规定时间内响应哨兵的 PING 命令,哨兵就会判定主库下线,然后开始自动切换主库的流程。

这个流程首先是执行哨兵的第二个任务,选主。主库挂了以后,哨兵就需要从很多个从库里,按照一定的规则选择一个从库实例,把它作为新的主库。这一步完成后,现在的集群里就有了新主库。

然后,哨兵会执行最后一个任务:通知。在执行通知任务时,哨兵会把新主库的连接信息发给其他从库,让它们执行 replicaof 命令,和新主库建立连接,并进行数据复制。同时,哨兵会把新主库的连接信息通知给客户端,让它们把请求操作发到新主库上。

哨兵机制的三项任务与目标

哨兵机制的三项任务与目标

在这三个任务中,通知任务相对来说比较简单,哨兵只需要把新主库信息发给从库和客户端,让它们和新主库建立连接就行,并不涉及决策的逻辑。但是,在监控和选主这两个任务中,哨兵需要做出两个决策:

  • 在监控任务中,哨兵需要判断主库是否处于下线状态;
  • 在选主任务中,哨兵也要决定选择哪个从库实例作为主库。

主观下线和客观下线

哨兵进程会使用 PING 命令检测它自己和主、从库的网络连接情况,用来判断实例的状态。

如果检测的是从库,那么,哨兵简单地把它标记为“主观下线”就行了,因为从库的下线影响一般不太大,集群的对外服务不会间断。

但是,如果检测的是主库,那么,哨兵还不能简单地把它标记为“主观下线”,开启主从切换。因为很有可能存在这么一个情况:那就是哨兵误判了,其实主库并没有故障。可是,一旦启动了主从切换,后续的选主和通知操作都会带来额外的计算和通信开销。

误判一般会发生在集群网络压力较大、网络拥塞,或者是主库本身压力较大的情况下。

那怎么减少误判呢?

哨兵机制,它通常会采用多实例组成的集群模式进行部署,这也被称为哨兵集群。引入多个哨兵实例一起来判断,就可以避免单个哨兵因为自身网络状况不好,而误判主库下线的情况。同时,多个哨兵的网络同时不稳定的概率较小,由它们一起做决策,误判率也能降低。

在判断主库是否下线时,不能由一个哨兵说了算,只有大多数的哨兵实例,都判断主库已经“主观下线”了,主库才会被标记为“客观下线”,这个叫法也是表明主库下线成为一个客观事实了。这个判断原则就是:少数服从多数。同时,这会进一步触发哨兵开始主从切换流程。

客观下线的判断

客观下线的判断

简单来说,“客观下线”的标准就是,当有 N 个哨兵实例时,最好要有 N/2 + 1 个实例判断主库为“主观下线”,才能最终判定主库为“客观下线”。这样一来,就可以减少误判的概率,也能避免误判带来的无谓的主从库切换。

如何选定新主库?

一般来说,我把哨兵选择新主库的过程称为“筛选 + 打分”。简单来说,我们在多个从库中,先按照一定的筛选条件,把不符合条件的从库去掉。然后,我们再按照一定的规则,给剩下的从库逐个打分,将得分最高的从库选为新主库。

新主库的选择过程

新主库的选择过程

首先来看筛选的条件。

在选主时,除了要检查从库的当前在线状态,还要判断它之前的网络连接状态。

配置项 down-after-milliseconds * 10

接下来就要给剩余的从库打分了。我们可以分别按照三个规则依次进行三轮打分,这三个规则分别是从库优先级、从库复制进度以及从库 ID 号。只要在某一轮中,有从库得分最高,那么它就是主库了,选主过程到此结束。如果没有出现得分最高的从库,那么就继续进行下一轮。

基于复制进度的新主库选主原则

基于复制进度的新主库选主原则

首先,哨兵会按照在线状态、网络状态,筛选过滤掉一部分不符合要求的从库,然后,依次按照优先级、复制进度、ID 号大小再对剩余的从库进行打分,只要有得分最高的从库出现,就把它选为新主库。

08 | 哨兵集群:哨兵挂了,主从库还能切换吗?

如果有哨兵实例在运行时发生了故障,主从库还能正常切换吗?

实际上,一旦多个实例组成了哨兵集群,即使有哨兵实例出现故障挂掉了,其他哨兵还能继续协作完成主从库切换的工作,包括判定主库是不是处于下线状态,选择新主库,以及通知从库和客户端。

如果你部署过哨兵集群的话就会知道,在配置哨兵的信息时,我们只需要用到下面的这个配置项,设置主库的 IP 和端口,并没有配置其他哨兵的连接信息。

sentinel monitor <master-name> <ip> <redis-port> <quorum> 

这些哨兵实例既然都不知道彼此的地址,又是怎么组成集群的呢?

基于 pub/sub 机制的哨兵集群组成

哨兵实例之间可以相互发现,要归功于 Redis 提供的 pub/sub 机制,也就是发布 / 订阅机制。

哨兵只要和主库建立起了连接,就可以在主库上发布消息了,比如说发布它自己的连接信息(IP 和端口)。同时,它也可以从主库上订阅消息,获得其他哨兵发布的连接信息。当多个哨兵实例都在主库上做了发布和订阅操作后,它们之间就能知道彼此的 IP 地址和端口。

为了区分不同应用的消息,Redis 会以频道的形式,对这些消息进行分门别类的管理。所谓的频道,实际上就是消息的类别。当消息类别相同时,它们就属于同一个频道。反之,就属于不同的频道。只有订阅了同一个频道的应用,才能通过发布的消息进行信息交换。

在主从集群中,主库上有一个名为“sentinel:hello”的频道,不同哨兵就是通过它来相互发现,实现互相通信的。

哨兵集群

哨兵集群

那么,哨兵是如何知道从库的 IP 地址和端口的呢?

哨兵 INFO 命令

哨兵 INFO 命令

如何在客户端通过监控了解哨兵进行主从切换的过程呢?比如说,主从切换进行到哪一步了?这其实就是要求,客户端能够获取到哨兵集群在监控、选主、切换这个过程中发生的各种事件。

基于 pub/sub 机制的客户端事件通知

从本质上说,哨兵就是一个运行在特定模式下的 Redis 实例,只不过它并不服务请求操作,只是完成监控、选主和通知的任务。所以,每个哨兵实例也提供 pub/sub 机制,客户端可以从哨兵订阅消息。哨兵提供的消息订阅频道有很多,不同频道包含了主从库切换过程中的不同关键事件。

哨兵提供的消息订阅频道

哨兵提供的消息订阅频道

有了 pub/sub 机制,哨兵和哨兵之间、哨兵和从库之间、哨兵和客户端之间就都能建立起连接了,再加上主库下线判断和选主依据,哨兵集群的监控、选主和通知三个任务就基本可以正常工作了。

由哪个哨兵执行主从切换?

确定由哪个哨兵执行主从切换的过程,和主库“客观下线”的判断过程类似,也是一个“投票仲裁”的过程。

任何一个实例只要自身判断主库“主观下线”后,就会给其他实例发送 is-master-down-by-addr 命令。接着,其他实例会根据自己和主库的连接情况,做出 Y 或 N 的响应,Y 相当于赞成票,N 相当于反对票。

主库“客观下线”

主库“客观下线”

一个哨兵获得了仲裁所需的赞成票数后,就可以标记主库为“客观下线”。这个所需的赞成票数是通过哨兵配置文件中的 quorum 配置项设定的。赞成票包括哨兵自己的一张赞成票。

此时,这个哨兵就可以再给其他哨兵发送命令,表明希望由自己来执行主从切换,并让所有其他哨兵进行投票。这个投票过程称为“Leader 选举”。因为最终执行主从切换的哨兵称为 Leader,投票过程就是确定 Leader。

在投票过程中,任何一个想成为 Leader 的哨兵,要满足两个条件:第一,拿到半数以上的赞成票;第二,拿到的票数同时还需要大于等于哨兵配置文件中的 quorum 值。

3 个哨兵、quorum 为 2 的选举过程

3 个哨兵、quorum 为 2 的选举过程

在 T4 时刻,S2 才收到 T1 时 S1 发送的投票命令。因为 S2 已经在 T3 时同意了 S3 的投票请求,此时,S2 给 S1 回复 N,表示不同意 S1 成为 Leader。发生这种情况,是因为 S3 和 S2 之间的网络传输正常,而 S1 和 S2 之间的网络传输可能正好拥塞了,导致投票请求传输慢了。

哨兵集群能够进行成功投票,很大程度上依赖于选举命令的正常网络传播。如果网络压力较大或有短时堵塞,就可能导致没有一个哨兵能拿到半数以上的赞成票。所以,等到网络拥塞好转之后,再进行投票选举,成功的概率就会增加。

23 | 旁路缓存:Redis是如何工作的?

缓存的特征

计算机系统中的三层存储结构

计算机系统中的三层存储结构

计算机系统中,默认有两种缓存

计算机系统中,默认有两种缓存

缓存的第一个特征:在一个层次化的系统中,缓存一定是一个快速子系统,数据存在缓存中时,能避免每次从慢速子系统中存取数据。

缓存的第二个特征:缓存系统的容量大小总是小于后端慢速系统的,我们不可能把所有数据都放在缓存系统中。

Redis 缓存处理请求的两种情况

把 Redis 用作缓存时,我们会把 Redis 部署在数据库的前端,业务应用在访问数据时,会先查询 Redis 中是否保存了相应的数据。此时,根据数据是否存在缓存中,会有两种情况。

  • 缓存命中:Redis 中有相应数据,就直接读取 Redis,性能非常快。
  • 缓存缺失:Redis 中没有保存相应数据,就从后端数据库中读取数据,性能就会变慢。而且,一旦发生缓存缺失,为了让后续请求能从缓存中读取到数据,我们需要把缺失的数据写入 Redis,这个过程叫作缓存更新。缓存更新操作会涉及到保证缓存和数据库之间的数据一致性问题。

发生缓存命中或缺失时,应用读取数据的情况

发生缓存命中或缺失时,应用读取数据的情况

使用 Redis 缓存时,我们基本有三个操作:

  • 应用读取数据时,需要先读取 Redis;
  • 发生缓存缺失时,需要从数据库读取数据;
  • 发生缓存缺失时,还需要更新缓存。

那么,这些操作具体是由谁来做的呢?

Redis 作为旁路缓存的使用操作

Redis 是一个独立的系统软件,和业务应用程序是两个软件,当我们部署了 Redis 实例后,它只会被动地等待客户端发送请求,然后再进行处理。所以,如果应用程序想要使用 Redis 缓存,我们就要在程序中增加相应的缓存操作代码。所以,我们也把 Redis 称为旁路缓存,也就是说,读取缓存、读取数据库和更新缓存的操作都需要在应用程序中来完成。

那么,使用 Redis 缓存时,具体来说,我们需要在应用程序中增加三方面的代码:

  • 当应用程序需要读取数据时,我们需要在代码中显式调用 Redis 的 GET 操作接口,进行查询;
  • 如果缓存缺失了,应用程序需要再和数据库连接,从数据库中读取数据;
  • 当缓存中的数据需要更新时,我们也需要在应用程序中显式地调用 SET 操作接口,把更新的数据写入缓存。

为了使用缓存,Web 应用程序需要有一个表示缓存系统的实例对象 redisCache,还需要主动调用 Redis 的 GET 接口,并且要处理缓存命中和缓存缺失时的逻辑,例如在缓存缺失时,需要更新缓存。

缓存的类型

按照 Redis 缓存是否接受写请求,我们可以把它分成只读缓存和读写缓存。

只读缓存

当 Redis 用作只读缓存时,应用要读取数据的话,会先调用 Redis GET 接口,查询数据是否存在。而所有的数据写请求,会直接发往后端的数据库,在数据库中增删改。对于删改的数据来说,如果 Redis 已经缓存了相应的数据,应用需要把这些缓存的数据删除,Redis 中就没有这些数据了。

当应用再次读取这些数据时,会发生缓存缺失,应用会把这些数据从数据库中读出来,并写到缓存中。这样一来,这些数据后续再被读取时,就可以直接从缓存中获取了,能起到加速访问的效果。

只读缓存

只读缓存

只读缓存直接在数据库中更新数据的好处是,所有最新的数据都在数据库中,而数据库是提供数据可靠性保障的,这些数据不会有丢失的风险。

读写缓存

对于读写缓存来说,除了读请求会发送到缓存进行处理(直接在缓存中查询数据是否存在),所有的写请求也会发送到缓存,在缓存中直接对数据进行增删改操作。

但是,和只读缓存不一样的是,在使用读写缓存时,最新的数据是在 Redis 中,而 Redis 是内存数据库,一旦出现掉电或宕机,内存中的数据就会丢失。

根据业务应用对数据可靠性和缓存性能的不同要求,我们会有同步直写和异步写回两种策略。其中,同步直写策略优先保证数据可靠性,而异步写回策略优先提供快速响应。

同步直写是指,写请求发给缓存的同时,也会发给后端数据库进行处理,等到缓存和数据库都写完数据,才给客户端返回。

而异步写回策略,则是优先考虑了响应延迟。此时,所有写请求都先在缓存中处理。等到这些增改的数据要被从缓存中淘汰出来时,缓存将它们写回后端数据库。

同步直写和异步写回

同步直写和异步写回

小结

缓存的两个特征,分别是在分层系统中,数据暂存在快速子系统中有助于加速访问;缓存容量有限,缓存写满时,数据需要被淘汰。而 Redis 天然就具有高性能访问和数据淘汰机制,正好符合缓存的这两个特征的要求,所以非常适合用作缓存。

Redis 作为旁路缓存的特性,旁路缓存就意味着需要在应用程序中新增缓存逻辑处理的代码。

刻鹄不成尚类鹜,画虎不成反类狗。   好文要顶 关注我 收藏该文 clipboard
关注 - 2
粉丝 - 1     +加关注 0 0       « 上一篇: 使用 TIMESTAMP 或 DATETIME 追踪行的修改时间
» 下一篇: Installing MySQL on Microsoft Windows Using a noinstall ZIP Archive posted @ 2021-01-04 23:32  clipboard  阅读(2827)  评论(0)  编辑  收藏  举报

标签:实战,主库,缓存,快照,核心技术,Redis,哨兵,从库
来源: https://www.cnblogs.com/mjhblog/p/16065177.html

本站声明: 1. iCode9 技术分享网(下文简称本站)提供的所有内容,仅供技术学习、探讨和分享;
2. 关于本站的所有留言、评论、转载及引用,纯属内容发起人的个人观点,与本站观点和立场无关;
3. 关于本站的所有言论和文字,纯属内容发起人的个人观点,与本站观点和立场无关;
4. 本站文章均是网友提供,不完全保证技术分享内容的完整性、准确性、时效性、风险性和版权归属;如您发现该文章侵犯了您的权益,可联系我们第一时间进行删除;
5. 本站为非盈利性的个人网站,所有内容不会用来进行牟利,也不会利用任何形式的广告来间接获益,纯粹是为了广大技术爱好者提供技术内容和技术思想的分享性交流网站。

专注分享技术,共同学习,共同进步。侵权联系[81616952@qq.com]

Copyright (C)ICode9.com, All Rights Reserved.

ICode9版权所有