ICode9

精准搜索请尝试: 精确搜索
首页 > 数据库> 文章详细

redis 5.0.2 源码阅读——压缩列表ziplist

2021-07-07 09:31:37  阅读:178  来源: 互联网

标签:5.0 zl 00 ziplist prevlen redis unsigned 源码 entry


redis中压缩列表ziplist相关的文件为:ziplist.h与ziplist.c

压缩列表是redis专门开发出来为了节约内存的内存编码数据结构。源码中关于压缩列表介绍的注释也写得比较详细。

一、数据结构

压缩列表的整体结构如下

1 /*
2 <zlbytes> <zltail> <zllen> <entry> <entry> ... <entry> <zlend>
3 */

各个部分的含义

类型 长度 用途
zlbytes uint32_t 4B ziplist总字节数,包括zlbytes
zltail uint32_t 4B 最后一个entry的偏移量
zllen uint16_t 2B entry数量
zlend uint8_t 1B ziplist固定结尾,值固定为0xFF
entry 不定 不定  ziplist的各节点,具体结构不定

 

 

 

 

 

 

 

 

 关于entry

 1 /**
 2  * We use this function to receive information about a ziplist entry.
 3  * Note that this is not how the data is actually encoded, is just what we
 4  * get filled by a function in order to operate more easily.
 5  */
 6 typedef struct zlentry {
 7     unsigned int prevrawlensize; /* Bytes used to encode the previous entry len*/
 8     unsigned int prevrawlen;     /* Previous entry len. */
 9     unsigned int lensize;        /* Bytes used to encode this entry type/len.
10                                     For example strings have a 1, 2 or 5 bytes
11                                     header. Integers always use a single byte.*/
12     unsigned int len;            /* Bytes used to represent the actual entry.
13                                     For strings this is just the string length
14                                     while for integers it is 1, 2, 3, 4, 8 or
15                                     0 (for 4 bit immediate) depending on the
16                                     number range. */
17     unsigned int headersize;     /* prevrawlensize + lensize. */
18     unsigned char encoding;      /* Set to ZIP_STR_* or ZIP_INT_* depending on
19                                     the entry encoding. However for 4 bits
20                                     immediate integers this can assume a range
21                                     of values and must be range-checked. */
22     unsigned char *p;            /* Pointer to the very start of the entry, that
23                                     is, this points to prev-entry-len field. */
24 } zlentry;

借用redis源码注释的结构简化一下

1 /*
2 <prevlen> <encoding> [<entry-data>]
3 */

  prevlen表示的是前一个entry的长度,用于反向遍历,即从最后一个元素遍历到第一个元素。因每个entry的长度是不确定的,所以要记录一下前一个entry的长度。prevlen本身的长度也是不定的,与前一entry的实际长度有关。若长度小于254,只需要1B就可以了。若实际长度大于等于254,则需要5B,第1B固定为254,后面4B存储实际长度。

encoding则与entry存储的data有关。

encoding前两位 encoding内容 encoding长度 entry-data类型 entry-data长度
00 |00pppppp| 1B string 6b能表示的数字,0~63,encoding中存储的长度为大端字节序
01 |01pppppp|qqqqqqqq| 2B string 14b能表示的数字,64~16383,encoding中存储的长度为大端字节序
10 |10000000|qqqqqqqq|rrrrrrrr|ssssssss|tttttttt| 5B string int32能表示的数字,16384~2^32-1,encoding中存储的长度为大端字节序
11 |11000000| 1B int16 2B
11 |11010000| 1B int32 4B
11 |11100000| 1B int64 8B
11 |11110000| 1B int24 3B
11 |11111110| 1B int8 1B
11 |1111xxxx| 1B xxxx在[0001,1101]之间,表示0~12的数字,存储时进行+1操作
11 |11111111| 1B End of ziplist special entry(源码注释)

 如一个具体的ziplist,有两个成员“2”与“5”

1 /*
2 [0f 00 00 00] [0c 00 00 00] [02 00] [00 f3] [02 f6] [ff]
3       |             |          |       |       |     |
4    zlbytes        zltail     zllen    "2"     "5"   end
5 */

  zlbytes值为15,表示这个ziplist总长为15B

  zltail的值为12,表示最后一个entry的偏移量为12

  zllen的值为2,表示一共有两个entry

  第一个entry的prevlen为0。因为第一个成员之前没有其它成员了,所以是0,占1B。值为“2”,可以用数字表示,且是介于[0,12]之间,故使用1111xxxx的encoding方式,无entry-data。2的二进制编码为0010,+1后为0011,实际为11110011,即0xF3。同理,5的encoding为0xF6。做为第二个entry,其前一个entry的总长为2,故其prevlen值为2。

  zlend固定是0xFF。

二、基本操作

redis中使用了大量的宏定义与函数配合操作ziplist。

1、创建

一些重要的宏定义

 1 /**
 2  * Return total bytes a ziplist is composed of.
 3  * 返回组成压缩列表的总的字节数
 4  */
 5 #define ZIPLIST_BYTES(zl)       (*((uint32_t*)(zl)))
 6 
 7 /**
 8  * Return the offset of the last item inside the ziplist.
 9  * 返回最后一个元素在压缩列表中的偏移量
10  */
11 #define ZIPLIST_TAIL_OFFSET(zl) (*((uint32_t*)((zl)+sizeof(uint32_t))))
12 
13 /**
14  * Return the length of a ziplist, or UINT16_MAX if the length cannot be
15  * determined without scanning the whole ziplist.
16  * 返回压缩列表中entry的数量
17  */
18 #define ZIPLIST_LENGTH(zl)      (*((uint16_t*)((zl)+sizeof(uint32_t)*2)))
19 
20 /**
21  * The size of a ziplist header: two 32 bit integers for the total
22  * bytes count and last item offset. One 16 bit integer for the number
23  * of items field.
24  * 返回压缩列表头部的大小:zlbytes + zltail + zllen ----- 4 + 4 + 2
25  */
26 #define ZIPLIST_HEADER_SIZE     (sizeof(uint32_t)*2+sizeof(uint16_t))
27 
28 /**
29  * Size of the "end of ziplist" entry. Just one byte.
30  * 返回压缩列表尾部的大小:1个字节
31  */
32 #define ZIPLIST_END_SIZE        (sizeof(uint8_t))
33 
34 /**
35  * Return the pointer to the first entry of a ziplist.
36  * 返回指向压缩列表中第一个entry的指针
37  */
38 #define ZIPLIST_ENTRY_HEAD(zl)  ((zl)+ZIPLIST_HEADER_SIZE)
39 
40 /**
41  * Return the pointer to the last entry of a ziplist, using the
42  * last entry offset inside the ziplist header.
43  * 返回指向压缩列表中最后一个entry的指针
44  */
45 #define ZIPLIST_ENTRY_TAIL(zl)  ((zl)+intrev32ifbe(ZIPLIST_TAIL_OFFSET(zl)))
46 
47 /**
48  * Return the pointer to the last byte of a ziplist, which is, the
49  * end of ziplist FF entry.
50  * 返回指向压缩列表中最后一个自己的指针
51  */
52 #define ZIPLIST_ENTRY_END(zl)   ((zl)+intrev32ifbe(ZIPLIST_BYTES(zl))-1)
53 
54 /**
55  * Increment the number of items field in the ziplist header. Note that this
56  * macro should never overflow the unsigned 16 bit integer, since entries are
57  * always pushed one at a time. When UINT16_MAX is reached we want the count
58  * to stay there to signal that a full scan is needed to get the number of
59  * items inside the ziplist.
60  * 压缩列表中entry的数量增加incr,但是不可以超过UINT16_MAX,也就是2个字节
61  */
62 #define ZIPLIST_INCR_LENGTH(zl,incr) { \
63     if (ZIPLIST_LENGTH(zl) < UINT16_MAX) \
64         ZIPLIST_LENGTH(zl) = intrev16ifbe(intrev16ifbe(ZIPLIST_LENGTH(zl))+incr); \
65 }

创建函数

 1 /**
 2  * Create a new empty ziplist.
 3  * 创建一个压缩列表
 4  */
 5 unsigned char *ziplistNew(void) {
 6     //zlbytes + zltail + zllen + zlend ----- 4 + 4 + 2 + 1
 7     unsigned int bytes = ZIPLIST_HEADER_SIZE+1;
 8     //分配内存
 9     unsigned char *zl = zmalloc(bytes);
10     //设置压缩列表中的zlbytes
11     ZIPLIST_BYTES(zl) = intrev32ifbe(bytes);
12     //设置最后一个元素的偏移量zltail
13     ZIPLIST_TAIL_OFFSET(zl) = intrev32ifbe(ZIPLIST_HEADER_SIZE);
14     //设置entry的数量
15     ZIPLIST_LENGTH(zl) = 0;
16     //设置帧结束符0xFF
17     zl[bytes-1] = ZIP_END;
18     return zl;
19 }

新创建的ziplist,没有entry,只有zlbytes、zltail、zllen与zlend

1 /*
2 [0b 00 00 00] [0a 00 00 00] [00 00] [ff]
3       |             |          |     |
4    zlbytes        zltail     zllen  end
5 */

2、插入

底层插入实现函数

  1 /**
  2  * Insert item at "p".
  3  * 在位置p处插入元素
  4  */
  5 unsigned char *__ziplistInsert(unsigned char *zl, unsigned char *p, unsigned char *s, unsigned int slen) {
  6     size_t curlen = intrev32ifbe(ZIPLIST_BYTES(zl)), reqlen;
  7     unsigned int prevlensize, prevlen = 0;
  8     size_t offset;
  9     int nextdiff = 0;
 10     unsigned char encoding = 0;
 11     long long value = 123456789; /* initialized to avoid warning. Using a value
 12                                     that is easy to see if for some reason
 13                                     we use it uninitialized. */
 14     zlentry tail;
 15 
 16     /**
 17      * Find out prevlen for the entry that is inserted.
 18      * 为了出入元素,获取所要插入位置当前节点的prevlen和prevlensize
 19      */
 20     if (p[0] != ZIP_END) {//如果不是插在尾部
 21         //取出前一个entry所占的字节数
 22         ZIP_DECODE_PREVLEN(p, prevlensize, prevlen);
 23     } else {//如果是插在尾部
 24         //得到指向最后一个entry的指针
 25         unsigned char *ptail = ZIPLIST_ENTRY_TAIL(zl);
 26         if (ptail[0] != ZIP_END) {//如果链表不为空
 27             //计算所有entry所占的字节数
 28             prevlen = zipRawEntryLength(ptail);
 29         }
 30     }
 31 
 32     /**
 33      * See if the entry can be encoded
 34      * 对entry尝试使用数字编码
 35      */
 36     if (zipTryEncoding(s,slen,&value,&encoding)) {
 37         /* 'encoding' is set to the appropriate integer encoding 'encoding' 设置为适当的整数编码*/
 38         reqlen = zipIntSize(encoding);
 39     } else {
 40         /**
 41          * 'encoding' is untouched, however zipStoreEntryEncoding will use the
 42          * string length to figure out how to encode it.
 43          * 'encoding' 未受影响,但是 zipStoreEntryEncoding 将使用字符串长度来确定如何对其进行编码。
 44          */
 45         reqlen = slen;
 46     }
 47     /**
 48      * We need space for both the length of the previous entry and
 49      * the length of the payload.
 50      * 获得本entry的总长度,即prevlen、encoding、entry-data长度和。
 51      */
 52     reqlen += zipStorePrevEntryLength(NULL,prevlen);
 53     reqlen += zipStoreEntryEncoding(NULL,encoding,slen);
 54 
 55     /**
 56      * When the insert position is not equal to the tail, we need to
 57      * make sure that the next entry can hold this entry's length in
 58      * its prevlen field.
 59      * 当插入位置不是结尾时,判断一下插入后,后一个entry的prevlen是否足够存储新entry的长度。
 60      * 此处需要注意,如果原本是5B的prevlen,当前1B就足够存储,则不做任何处理,强制使用5B来存储1B能存储的数字。
 61      * 而如果原来是1B,当前要5B,则还需要4B空间。
 62      */
 63     int forcelarge = 0;
 64     nextdiff = (p[0] != ZIP_END) ? zipPrevLenByteDiff(p,reqlen) : 0;
 65     if (nextdiff == -4 && reqlen < 4) {
 66         nextdiff = 0;
 67         forcelarge = 1;
 68     }
 69 
 70     /* Store offset because a realloc may change the address of zl. */
 71     offset = p-zl;
 72     zl = ziplistResize(zl,curlen+reqlen+nextdiff);
 73     p = zl+offset;
 74 
 75     /**
 76      * Apply memory move when necessary and update tail offset.
 77      * 重新分配ziplist空间。新增加的字节数。
 78      */
 79     if (p[0] != ZIP_END) {
 80         /* Subtract one because of the ZIP_END bytes 移动压缩列表中的元素到正确位置*/
 81         memmove(p+reqlen,p-nextdiff,curlen-offset-1+nextdiff);
 82 
 83         /* Encode this entry's raw length in the next entry. 修正插入位置entry的prevlen*/
 84         if (forcelarge)
 85             zipStorePrevEntryLengthLarge(p+reqlen,reqlen);
 86         else
 87             zipStorePrevEntryLength(p+reqlen,reqlen);
 88 
 89         /* Update offset for tail 修改zltail*/
 90         ZIPLIST_TAIL_OFFSET(zl) =
 91             intrev32ifbe(intrev32ifbe(ZIPLIST_TAIL_OFFSET(zl))+reqlen);
 92 
 93         /**
 94          * When the tail contains more than one entry, we need to take
 95          * "nextdiff" in account as well. Otherwise, a change in the
 96          * size of prevlen doesn't have an effect on the *tail* offset.
 97          * 如果需要的话更新插入位置之后的每一个entry的prevlen
 98          */
 99         zipEntry(p+reqlen, &tail);
100         if (p[reqlen+tail.headersize+tail.len] != ZIP_END) {
101             ZIPLIST_TAIL_OFFSET(zl) =
102                 intrev32ifbe(intrev32ifbe(ZIPLIST_TAIL_OFFSET(zl))+nextdiff);
103         }
104     } else {
105         /* This element will be the new tail. 如果元素是插在尾部*/
106         ZIPLIST_TAIL_OFFSET(zl) = intrev32ifbe(p-zl);
107     }
108 
109     /* When nextdiff != 0, the raw length of the next entry has changed, so
110      * we need to cascade the update throughout the ziplist */
111     if (nextdiff != 0) {
112         offset = p-zl;
113         zl = __ziplistCascadeUpdate(zl,p+reqlen);
114         p = zl+offset;
115     }
116 
117     /* Write the entry 填写新entry*/
118     p += zipStorePrevEntryLength(p,prevlen);
119     p += zipStoreEntryEncoding(p,encoding,slen);
120     if (ZIP_IS_STR(encoding)) {
121         memcpy(p,s,slen);
122     } else {
123         zipSaveInteger(p,value,encoding);
124     }
125     ZIPLIST_INCR_LENGTH(zl,1);
126     return zl;
127 }

被用户使用的ziplistInsert和ziplistPush函数调用

ziplistInsert函数

1 /* Insert an entry at "p". 在位置p插入一个entry*/
2 unsigned char *ziplistInsert(unsigned char *zl, unsigned char *p, unsigned char *s, unsigned int slen) {
3     return __ziplistInsert(zl,p,s,slen);
4 }

 

ziplistPush函数

1 unsigned char *ziplistPush(unsigned char *zl, unsigned char *s, unsigned int slen, int where) {
2     unsigned char *p;
3     p = (where == ZIPLIST_HEAD) ? ZIPLIST_ENTRY_HEAD(zl) : ZIPLIST_ENTRY_END(zl);
4     return __ziplistInsert(zl,p,s,slen);
5 }

假设有以下ziplist

1 /*
2 [0f 00 00 00] [0c 00 00 00] [02 00] [00 f3] [02 f6] [ff]
3       |             |          |       |       |     |
4    zlbytes        zltail     zllen    "2"     "5"   end
5 */

要在"2"与"5"之间插入节点“3”,则:

  a.获取所要插入位置当前节点“5”的prevlen=2,prevlen_size=1

    若要插入的位置是end处,则取出zltail进行偏移,取到“5”节点,直接进行计算。而如果当前是个空ziplist,直接就是0了。

  b.获取节点“3”的实际长度,若其为纯数字,则可以使用数字存储,节约内存。否则直接使用外部传入的,string的长度。

这里有一点:

 1 int zipTryEncoding(unsigned char *entry, unsigned int entrylen, long long *v, unsigned char *encoding) {
 2     long long value;
 3 
 4     if (entrylen >= 32 || entrylen == 0) return 0;
 5     if (string2ll((char*)entry,entrylen,&value)) {
 6         /* Great, the string can be encoded. Check what's the smallest
 7          * of our encoding types that can hold this value. */
 8         if (value >= 0 && value <= 12) {
 9             *encoding = ZIP_INT_IMM_MIN+value;
10         } else if (value >= INT8_MIN && value <= INT8_MAX) {
11             *encoding = ZIP_INT_8B;
12         } else if (value >= INT16_MIN && value <= INT16_MAX) {
13             *encoding = ZIP_INT_16B;
14         } else if (value >= INT24_MIN && value <= INT24_MAX) {
15             *encoding = ZIP_INT_24B;
16         } else if (value >= INT32_MIN && value <= INT32_MAX) {
17             *encoding = ZIP_INT_32B;
18         } else {
19             *encoding = ZIP_INT_64B;
20         }
21         *v = value;
22         return 1;
23     }
24     return 0;
25 }

在尝试使用数字编码的时候,如果len >= 32,则直接不尝试,并不清楚这个32是怎么来的。

本例中,“3”可以直接使用数字编码,且在[0,12]之间,故没有entry-data

c.获得本entry的总长度,即prevlen、encoding、entry-data长度和。本处为1+1=2

d.判断一下插入后,后一个entry的prevlen是否足够存储新entry的长度。新长度为2,原entry的prevlen只有1B,足够。

此处需要注意,如果原本是5B的prevlen,当前1B就足够存储,则不做任何处理,强制使用5B来存储1B能存储的数字。而如果原来是1B,当前要5B,则还需要4B空间。

e.重新分配ziplist空间。新增加的字节数,为c、d两步之和。此处只需要额外2B的空间。

分配空间后:

1 /*
2 [11 00 00 00] [0c 00 00 00] [02 00] [00 f3] [02 f6] [ff] [00 ff]
3       |             |          |       |       |     |
4    zlbytes        zltail     zllen    "2"     "5"   end
5 */

重新分配空间会自动设置zlend与zlbytes

f.将“5”及之后的节点(不包括zlend)往后移:

1 /*
2 [11 00 00 00] [0c 00 00 00] [02 00] [00 f3] [02 f6] [02 f6] [ff]
3       |             |          |       |       |       |
4    zlbytes        zltail     zllen    "2"     "5"     "5"  
5 */

g.修正当前“5”所在位置的prevlen=2:

1 /*
2 [11 00 00 00] [0c 00 00 00] [02 00] [00 f3] [02 f6] [02 f6] [ff]
3       |             |          |       |       |       |
4    zlbytes        zltail     zllen    "2"     "5"     "5"  
5 */

h.修改zltail:

1 /*
2 [11 00 00 00] [0e 00 00 00] [02 00] [00 f3] [02 f6] [02 f6] [ff]
3       |             |          |       |       |       |
4    zlbytes        zltail     zllen    "2"     "5"     "5"  
5 */

i.填写新entry:

1 /*
2 [11 00 00 00] [0e 00 00 00] [03 00] [00 f3] [02 f4] [02 f6] [ff]
3       |             |          |       |       |       |
4    zlbytes        zltail     zllen    "2"     "3"     "5"  
5 */

若在此基础上,在“3”前,插入的是一个长度为256的string X,则:

a.获取“3”的prevlen与prevlen_size

prevlen=2,prevlen_size=1

b.长度大于32,使用string进行存储,实际长度data_len=256

c.获取entry总长度

此处prevlen长度为1B,encoding长度为2B ,entry-data长度为256B,共1+2+256=259

d.判断一下插入后,后一个entry的prevlen是否足够存储新entry的长度。新长度为259,超过了254,需要5B,而原本只有1B,还差了4B。即,nextdiff=4

e.分配空间。新增加字节数为259+4=263,共280B,即0x118

分配空间后:

1 /*
2 [0x118] [0xe] [03 00] [00 f3] [02 f4] [02 f6] [...] [ff]
3    |      |      |       |       |       |      |   
4 zlbytes zltail zllen    "2"     "3"     "5"    263B
5    4B     4B
6 */

f.memmove操作

ziplist中的memmove操作

1 memmove(p+reqlen,p-nextdiff,curlen-offset-1+nextdiff);

操作完之后

1 /*
2 [...] [00 f3] [02 f4] [02 f6] [...] [03 00] [00 f3] [02 f4] [02 f6] [ff]
3   |      |       |       |      |              |       |       |
4 header  "2"     "3"     "5"    255B           "2"     "3"     "5"  
5  10B 
6 */

其中header为zlbytes、zltail与tllen

其实与以下写法相同效果:

1 memmove(p+reqlen+nextdiff,p,curlen-offset-1+nextdiff);

这种写法操作完之后:

1 /*
2 [0x118] [0xe] [03 00] [00 f3] [02 f4] [02 f6] [...] [02 f4] [02 f6] [ff]
3    |      |      |       |       |       |      |      |       |
4 zlbytes zltail zllen    "2"     "3"     "5"    259B   "3"     "5"  
5    4B     4B
6 */

目的是一样的,把原来的节点移至正确的位置上。

g.修正当前“3”所在位置的prevlen=259,即0X103:

1 /*
2 [0x118] [0xe] [03 00] [00 f3] [...] [FE 03 01 00 00 f4] [02 f6] [ff]
3    |      |      |       |      |            |             |
4 zlbytes zltail zllen    "2"    259B         "3"           "5"  
5    4B     4B
6 */

h.此时节点"3"的长度发生变化,需要更新其后一个节点"5"的prevlen

1 /*
2 [0x118] [0xe] [03 00] [00 f3] [...] [FE 03 01 00 00 f4] [06 f6] [ff]
3    |      |      |       |      |            |             |
4 zlbytes zltail zllen    "2"    259B         "3"           "5"  
5    4B     4B
6 */

i.修改zltail

1 /*
2 [0x118] [0x115] [03 00] [00 f3] [...] [FE 00 00 01 03 f4] [06 f6] [ff]
3    |       |       |       |      |            |             |
4 zlbytes  zltail  zllen    "2"    259B         "3"           "5"  
5    4B      4B
6 */

j.填写新entry:

encoding值为:01000001 00000000 即0x4100,大端字节序

填写后:

1 /*
2 [0x118] [0x115] [03 00] [00 f3] [02 41 00 ...] [FE 00 00 01 03 f4] [06 f6] [ff]
3    |       |       |       |          |                 |             |
4 zlbytes  zltail  zllen    "2"         X                "3"           "5"  
5    4B      4B                        259B
6 */

k.更新zllen

1 /*
2 [0x118] [0x115] [04 00] [00 f3] [02 41 00 ...] [FE 00 00 01 03 f4] [06 f6] [ff]
3    |       |       |       |          |                 |             |
4 zlbytes  zltail  zllen    "2"         X                "3"           "5"  
5    4B      4B                        259B
6 */

若有连续几个entry的长度在[250,253]B之间,在插入新节点后可能存在连锁更新的情况。

如以下ziplist(只保留部分entry,其余节点省略):

1 /*
2 ... [FD 40 FA ...] [FD 40 FA ...] ...
3           |              |
4        E1 253B        E2 253B
5 */

E1的prevlen为FD,即长度为253。此时在E1之前插入一个长度为256的节点,E1需要增加prevlen的长度,从而导致E1整体长度增加。

E2的prevlen为FD,即E1的长度为253。增加4个节点之后为257,E2也需要增加prevlen的长度。

之后还可能会有E3,E4等entry需要处理,产生了连锁反应,直到到了以下情况才会停止:

i.到了zlend

ii.不需要继续扩展

iii.需要减少prevlen字节数时

连锁更新时需要多次重新分配空间,最坏情况下有n个节点的ziplist,需要分配n次空间,而每次分配的最坏情况时间复杂度为O(n),故连锁更新的最坏情况时间复杂度为O(n^2)。

3、查找

  ziplist的查找过程其实是一次遍历,依次解析出prevlen、encoding与entry-data,然后根据encoding类型,决定是要用strcmp,还是直接使用数字的比较。在首次进行数字比较的时候,会把传入要查找的串,尝试一次转换成数字的操作。如果无法转换,就会跳过数字比较操作。

查找操作支持每隔几个entry才做一次比较操作。如,查找每5个entry中,值为“1”的entry。

ziplistFind函数
 1 /**
 2  * Find pointer to the entry equal to the specified entry. Skip 'skip' entries
 3  * between every comparison. Returns NULL when the field could not be found.
 4  *
 5  * ziplist的查找过程其实是一次遍历,依次解析出prevlen、encoding与entry-data,然后根据encoding类型,
 6  * 决定是要用strcmp,还是直接使用数字的比较。在首次进行数字比较的时候,会把传入要查找的串,
 7  * 尝试一次转换成数字的操作。如果无法转换,就会跳过数字比较操作。
 8  *
 9  * 查找操作支持每隔几个entry才做一次比较操作。
10  */
11 unsigned char *ziplistFind(unsigned char *p, unsigned char *vstr, unsigned int vlen, unsigned int skip) {
12     int skipcnt = 0;
13     unsigned char vencoding = 0;
14     long long vll = 0;
15 
16     while (p[0] != ZIP_END) {
17         unsigned int prevlensize, encoding, lensize, len;
18         unsigned char *q;
19 
20         ZIP_DECODE_PREVLENSIZE(p, prevlensize);
21         ZIP_DECODE_LENGTH(p + prevlensize, encoding, lensize, len);
22         q = p + prevlensize + lensize;
23 
24         if (skipcnt == 0) {
25             /* Compare current entry with specified entry */
26             if (ZIP_IS_STR(encoding)) {
27                 if (len == vlen && memcmp(q, vstr, vlen) == 0) {
28                     return p;
29                 }
30             } else {
31                 /* Find out if the searched field can be encoded. Note that
32                  * we do it only the first time, once done vencoding is set
33                  * to non-zero and vll is set to the integer value. */
34                 if (vencoding == 0) {
35                     if (!zipTryEncoding(vstr, vlen, &vll, &vencoding)) {
36                         /* If the entry can't be encoded we set it to
37                          * UCHAR_MAX so that we don't retry again the next
38                          * time. */
39                         vencoding = UCHAR_MAX;
40                     }
41                     /* Must be non-zero by now */
42                     assert(vencoding);
43                 }
44 
45                 /* Compare current entry with specified entry, do it only
46                  * if vencoding != UCHAR_MAX because if there is no encoding
47                  * possible for the field it can't be a valid integer. */
48                 if (vencoding != UCHAR_MAX) {
49                     long long ll = zipLoadInteger(q, encoding);
50                     if (ll == vll) {
51                         return p;
52                     }
53                 }
54             }
55 
56             /* Reset skip count */
57             skipcnt = skip;
58         } else {
59             /* Skip entry */
60             skipcnt--;
61         }
62 
63         /* Move to next entry */
64         p = q + len;
65     }
66 
67     return NULL;
68 }

4、删除

底层实现的删除函数

 1 /**
 2  * Delete "num" entries, starting at "p". Returns pointer to the ziplist. 
 3  * 底层的删除函数
 4  * num:删除的元素的个数
 5  * p:删除的元素数组
 6 */
 7 unsigned char *__ziplistDelete(unsigned char *zl, unsigned char *p, unsigned int num) {
 8     unsigned int i, totlen, deleted = 0;
 9     size_t offset;
10     int nextdiff = 0;
11     zlentry first, tail;
12 
13     zipEntry(p, &first);
14     for (i = 0; p[0] != ZIP_END && i < num; i++) {
15         p += zipRawEntryLength(p);
16         deleted++;
17     }
18 
19     totlen = p-first.p; /* Bytes taken by the element(s) to delete. */
20     if (totlen > 0) {
21         if (p[0] != ZIP_END) {
22             /* Storing `prevrawlen` in this entry may increase or decrease the
23              * number of bytes required compare to the current `prevrawlen`.
24              * There always is room to store this, because it was previously
25              * stored by an entry that is now being deleted. */
26             nextdiff = zipPrevLenByteDiff(p,first.prevrawlen);
27 
28             /* Note that there is always space when p jumps backward: if
29              * the new previous entry is large, one of the deleted elements
30              * had a 5 bytes prevlen header, so there is for sure at least
31              * 5 bytes free and we need just 4. */
32             p -= nextdiff;
33             zipStorePrevEntryLength(p,first.prevrawlen);
34 
35             /* Update offset for tail */
36             ZIPLIST_TAIL_OFFSET(zl) =
37                 intrev32ifbe(intrev32ifbe(ZIPLIST_TAIL_OFFSET(zl))-totlen);
38 
39             /* When the tail contains more than one entry, we need to take
40              * "nextdiff" in account as well. Otherwise, a change in the
41              * size of prevlen doesn't have an effect on the *tail* offset. */
42             zipEntry(p, &tail);
43             if (p[tail.headersize+tail.len] != ZIP_END) {
44                 ZIPLIST_TAIL_OFFSET(zl) =
45                    intrev32ifbe(intrev32ifbe(ZIPLIST_TAIL_OFFSET(zl))+nextdiff);
46             }
47 
48             /* Move tail to the front of the ziplist */
49             memmove(first.p,p,
50                 intrev32ifbe(ZIPLIST_BYTES(zl))-(p-zl)-1);
51         } else {
52             /* The entire tail was deleted. No need to move memory. */
53             ZIPLIST_TAIL_OFFSET(zl) =
54                 intrev32ifbe((first.p-zl)-first.prevrawlen);
55         }
56 
57         /* Resize and update length */
58         offset = first.p-zl;
59         zl = ziplistResize(zl, intrev32ifbe(ZIPLIST_BYTES(zl))-totlen+nextdiff);
60         ZIPLIST_INCR_LENGTH(zl,-deleted);
61         p = zl+offset;
62 
63         /* When nextdiff != 0, the raw length of the next entry has changed, so
64          * we need to cascade the update throughout the ziplist */
65         if (nextdiff != 0)
66             zl = __ziplistCascadeUpdate(zl,p);
67     }
68     return zl;
69 }

被ziplistDelete和ziplistDeleteRange函数调用

 

 1 /**
 2  * Delete a single entry from the ziplist, pointed to by *p.
 3  * Also update *p in place, to be able to iterate over the
 4  * ziplist, while deleting entries.
 5  * 从zl指向的 ziplist 中删除单个条目。 同时更新 *p,以便能够在删除条目的同时迭代 ziplist。
 6  */
 7 unsigned char *ziplistDelete(unsigned char *zl, unsigned char **p) {
 8     size_t offset = *p-zl;
 9     zl = __ziplistDelete(zl,*p,1);
10 
11     /* Store pointer to current element in p, because ziplistDelete will
12      * do a realloc which might result in a different "zl"-pointer.
13      * When the delete direction is back to front, we might delete the last
14      * entry and end up with "p" pointing to ZIP_END, so check this. */
15     //删除之后当前位置的元素
16     *p = zl+offset;
17     return zl;
18 }
19 
20 /**
21  * Delete a range of entries from the ziplist.
22  * 从压缩列表中删除一个范围中的所有entries
23  */
24 unsigned char *ziplistDeleteRange(unsigned char *zl, int index, unsigned int num) {
25     unsigned char *p = ziplistIndex(zl,index);
26     return (p == NULL) ? zl : __ziplistDelete(zl,p,num);
27 }

如有以下ziplist:

1 /*
2 [0x118] [0x115] [04 00] [00 f3] [02 41 00 ...] [FE 00 00 01 03 f4] [06 f6] [ff]
3    |       |       |       |          |                 |             |
4 zlbytes  zltail  zllen    "2"         X                "3"           "5"  
5    4B      4B                        259B
6 */

删除的是节点“5”,因是最后一个节点,则只要先修改zltail:

1 /*
2 [0x118] [0x10F] [04 00] [00 f3] [02 41 00 ...] [FE 00 00 01 03 f4] [06 f6] [ff]
3    |       |       |       |          |                 |             |
4 zlbytes  zltail  zllen    "2"         X                "3"           "5"  
5    4B      4B                        259B
6 */

然后resize:

1 /*
2 [0x116] [0x10F] [04 00] [00 f3] [02 41 00 ...] [FE 00 00 01 03 f4] [ff]
3    |       |       |       |          |                 |         
4 zlbytes  zltail  zllen    "2"         X                "3"        
5    4B      4B                        259B
6 */

最后修改zllen即可:

1 /*
2 [0x116] [0x10F] [03 00] [00 f3] [02 41 00 ...] [FE 00 00 01 03 f4] [ff]
3    |       |       |       |          |                 |         
4 zlbytes  zltail  zllen    "2"         X                "3"        
5    4B      4B                        259B
6 */

如果是这个ziplist:

1 /*
2 [0x118] [0x115] [04 00] [00 41 00 ...] [FE 00 00 01 03 f4] [06 f3] [02 f6] [ff]
3    |       |       |          |                 |             |       |
4 zlbytes  zltail  zllen        X                "3"           "2"     "5"  
5    4B      4B                259B
6 */

如果删除是的节点"3",则先要计算删除后,"3"节点后的"2"节点的prevlen长度是否足够,然后直接写入。此时长度不够,并不会直接重新分配空间,而是直接使用之前"3"节的最后4B空间:

1 /*
2 [0x118] [0x115] [04 00] [00 41 00 ...] [FE 00] [FE 00 00 01 03 f3] [02 f6] [ff]
3    |       |       |          |           |             |             |
4 zlbytes  zltail  zllen        X           2B           "2"           "5"  
5    4B      4B                259B
6 */

然后修改zltail:

1 /*
2 [0x118] [0x113] [04 00] [00 41 00 ...] [FE 00] [FE 00 00 01 03 f3] [02 f6] [ff]
3    |       |       |          |           |             |             |
4 zlbytes  zltail  zllen        X           2B           "2"           "5"  
5    4B      4B                259B
6 */

接着进行memmove操作:

1 /*
2 [0x118] [0x113] [04 00] [00 41 00 ...] [FE 00 00 01 03 f3] [02 f6] [02 f6] [ff]
3    |       |       |          |                 |             |       | 
4 zlbytes  zltail  zllen        X                "2"           "5"     "5"
5    4B      4B                259B
6 */

resize操作:

1 /*
2 [0x116] [0x113] [04 00] [00 41 00 ...] [FE 00 00 01 03 f3] [02 f6] [ff]
3    |       |       |          |                 |             |   
4 zlbytes  zltail  zllen        X                "2"           "5"  
5    4B      4B                259B
6 */

最后要更新节点"2"及其之后entry的prevlen:

1 /*
2 [0x116] [0x113] [04 00] [00 41 00 ...] [FE 00 00 01 03 f3] [06 f6] [ff]
3    |       |       |          |                 |             |   
4 zlbytes  zltail  zllen        X                "2"           "5"  
5    4B      4B                259B
6 */

注意此时更新也是有可能产生连锁反应。

删除操作支持删除从指定位置开始,连续n个entry,操作类似。

 参考文章

  https://www.cnblogs.com/chinxi/p/12272173.html

标签:5.0,zl,00,ziplist,prevlen,redis,unsigned,源码,entry
来源: https://www.cnblogs.com/MrLiuZF/p/14980016.html

本站声明: 1. iCode9 技术分享网(下文简称本站)提供的所有内容,仅供技术学习、探讨和分享;
2. 关于本站的所有留言、评论、转载及引用,纯属内容发起人的个人观点,与本站观点和立场无关;
3. 关于本站的所有言论和文字,纯属内容发起人的个人观点,与本站观点和立场无关;
4. 本站文章均是网友提供,不完全保证技术分享内容的完整性、准确性、时效性、风险性和版权归属;如您发现该文章侵犯了您的权益,可联系我们第一时间进行删除;
5. 本站为非盈利性的个人网站,所有内容不会用来进行牟利,也不会利用任何形式的广告来间接获益,纯粹是为了广大技术爱好者提供技术内容和技术思想的分享性交流网站。

专注分享技术,共同学习,共同进步。侵权联系[81616952@qq.com]

Copyright (C)ICode9.com, All Rights Reserved.

ICode9版权所有