ICode9

精准搜索请尝试: 精确搜索
首页 > 编程语言> 文章详细

Python计算机视觉编程--第四章

2021-05-23 22:58:43  阅读:270  来源: 互联网

标签:Python 投影 self 编程 矩阵 标定 -- 分解 照相机


照相机模型与增强现实

一 、针孔照相机模型

针孔照相机模型(有时称为射影照相机模型)是计算机视觉中广泛使用的照相机模型。对于大多数应用来说,针孔照相机模型简单,并且具有足够的精准度。这个名字来源于一种类似暗箱机的照相机。该照相机从一个小孔采集射到暗箱内部的光线。在光线投影到图像平面之前,从唯一一个点经过,也就是照相机中心C。
在这里插入图片描述
由图像坐标轴和三维坐标系中的x轴和y轴对齐平行的假设,我们可以得出针孔照相机的投影性质。照相机的光学坐标轴和z轴一致,该投影几何一颗简化成相似三角形。在投影之前通过旋转和平移变换,对该坐标系加入三维点,会出现完整的投影变换。
在针孔照相机中,三维点X投影为图像点x(两个点都是用齐次坐标表示的),如下所示:
在这里插入图片描述
这里,3×4的矩阵P为照相机矩阵(或投影矩阵)。注意,在齐次坐标系中,三维点X的坐标由4个元素组成,X=[X,Y,Z,W]。这里的标量λ是三维点的逆深度。如果我们打算在齐次坐标中将最后一个数值归一化为1,那么就会使用到它。

1.1 照相机矩阵

照相机矩阵可以分解为:
在这里插入图片描述
其中,R是描述照相机方向的旋转矩阵,t是描述照相机中心位置的三维平移向量,内标定矩阵K描述照相机的投影性质。

标定矩阵仅和照相机自身的情况相关,通常情况下可以写成:

在这里插入图片描述
图像平面和照相机中心间的距离为焦距f。当像素数组在传感器上偏斜的时候,需要用到倾斜参数s。在大多数情况下,s可以设置成0.也就是说:
在这里插入图片描述
这里,我们使用了另外的记号fx和fy,两者关系为fx=αfy。

纵横比例参数α是在像素元素非正方形的情况下使用的。通常情况下,我们还可以默认设置α=1.经过这些假设,标定矩阵变为:

在这里插入图片描述
除焦距之外,标定矩阵中剩余的唯一参数为光心(有时称为主点)的坐标c=[cx,cy],也就是光线坐标轴和图像平面的交点。因为光心通常在图像的中心,并且图像的坐标是从左上角开始计算的,所以光心的坐标常接近于图像宽度和高度的一半。特别强调一点,这这个例子中,唯一未知的变量是焦距f。

1.2 三维点的投影

下面来创建照相机类,用来处理我们对照相机和投影建模所需要的全部操作:

from scipy import linalg
from pylab import  *

class Camera(object):
    """表示针孔照相机的类"""

    def __init__(self, P):
        """初始化 P = K[R|t] 照相机模型"""
        self.P = P
        self.K = None   # 标定矩阵
        self.R = None   # 旋转
        self.t = None   # 平移
        self.c = None   # 照相机中心

    def project(self, X):
        """X(4×n的数组)的投影点,并进行坐标归一化"""
        x = dot(self.P, X)
        for i in range(3):
            x[i] /= x[2]
        return x

    def rotation_matrix(a):
        """创建一个用于围绕向量a轴旋转的三维旋转矩阵"""
        R = eye(4)
        R[:3,:3] = linalg.expm([0,-a[2],a[1]],[a[2],0,-a[0]],[-a[1],a[0],0])
        return R

1.3 照相机矩阵的分解

如果给定方程(1.1节中)所示的照相机矩阵P,我们需要恢复内参数K以及照相机的位置t和姿势R。矩阵分块操作称为因子分解。这里,我们将使用一种矩阵因子分解的方法,称为RQ因子分解。

将下面的方法添加到Carmera类中:

    def factor(self):
        """将照相机矩阵分解为 K,R,t,其中, R=K[R|t]"""

        # 分解前3×3的部分
        K,R = linalg.rq(self.P[:,:3])

        # 将K的对角线元素设为正值
        T = diag(sign(diag(K)))
        if linalg.det(T) < 0:
            T[1,1] *= -1
        self.K = dot(K,T)
        self.R = dot(T,R)   # T的逆矩阵为其自身
        self.t = dot(linalg.inv(self.K), self.P[:,3])
        
        return self.K, self.R, self.t

RQ因子分解的结果并不是唯一的。在该因子分解中,分解的结果存在符号二义性。由于我们需要限制旋转矩阵R为正定的(否则,旋转坐标轴即可),所以如果需要,我们可以在求解到的结果中加入变换T来改变符号。

在示例照相机上运行下面的代码,观察照相机矩阵分解的效果:

if __name__=='__main__':

    K = array([[1000,0,500],[0,1000,300],[0,0,1]])
    tmp = Camera.rotation_matrix([0,0,1])[:3,:3]
    Rt = hstack((tmp,array([[50],[40],[30]])))
    cam = Camera(dot(K,Rt))

    print(K,Rt)
    print(cam.factor())

1.4 照相机中心

给定照相机投影矩阵P,我们可以计算出空间上照相机的所在位置。照相机的中心C,是一个三维点,满足约束PC=0。对于投影矩阵为P=K[R|t]的照相机,有:
在这里插入图片描述
照相机的中心可以由下述式子来计算:
在这里插入图片描述
注意,如预期一样,照相机的中心和内标定矩阵K无关。

下面的代码可以按照上面公式计算照相机的中心。将其添加到Camera类中,该方法会返回照相机的中心:

    def center(self):
        """计算并返回照相机的中心"""
        if self.c is not None:
            return self.c
        else:
            # 通过因子分解计算c
            self.factor()
            self.c = -dot(self.R.T, self.t)
            return self.c

二、照相机标定

标定照相机是指计算出该照相机的内参数。在我们的例子里,是指计算矩阵K。如果你的应用要求高精度,那么可以扩展该照相机模型,使其包含径向畸变和其他条件。对于大多数应用来说,我们在1.1节中s=0的K公式中的简单照相机模型已经足够。标定照相机的标准方法,拍摄多幅平面期盼模型的图像,然后进行处理计算。

标签:Python,投影,self,编程,矩阵,标定,--,分解,照相机
来源: https://blog.csdn.net/fishbb0406/article/details/117173084

本站声明: 1. iCode9 技术分享网(下文简称本站)提供的所有内容,仅供技术学习、探讨和分享;
2. 关于本站的所有留言、评论、转载及引用,纯属内容发起人的个人观点,与本站观点和立场无关;
3. 关于本站的所有言论和文字,纯属内容发起人的个人观点,与本站观点和立场无关;
4. 本站文章均是网友提供,不完全保证技术分享内容的完整性、准确性、时效性、风险性和版权归属;如您发现该文章侵犯了您的权益,可联系我们第一时间进行删除;
5. 本站为非盈利性的个人网站,所有内容不会用来进行牟利,也不会利用任何形式的广告来间接获益,纯粹是为了广大技术爱好者提供技术内容和技术思想的分享性交流网站。

专注分享技术,共同学习,共同进步。侵权联系[81616952@qq.com]

Copyright (C)ICode9.com, All Rights Reserved.

ICode9版权所有