ICode9

精准搜索请尝试: 精确搜索
首页 > 编程语言> 文章详细

LSMT 实战-python

2022-03-03 20:33:06  阅读:231  来源: 互联网

标签:实战 plt LSMT pred python step time model data


长短期记忆网络(LSTM,Long Short-Term Memory)

使用kears 搭建一个LSTM预测模型,使用2022年美国大学生数学建模大赛中C题中处理后的BTC比特币的数据进行数据训练和预测。

这篇博客包含两个预测,一种是使用前N天的数据预测后一天的数据,一种使用前N天的数据预测后N天的数据

第一种:使用前个三十天数据进行预测后一天的数据。

总数据集:1826个数据
数据下载地址:需要的可以自行下载,很快
模型结构
Model: "sequential"
_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
lstm (LSTM)                  (None, 30, 64)            16896     
_________________________________________________________________
lstm_1 (LSTM)                (None, 30, 128)           98816     
_________________________________________________________________
lstm_2 (LSTM)                (None, 32)                20608     
_________________________________________________________________
dropout (Dropout)            (None, 32)                0         
_________________________________________________________________
dense (Dense)                (None, 1)                 33        
=================================================================
Total params: 136,353
Trainable params: 136,353
Non-trainable params: 0
_________________________________________________________________
训练100次:

image

损失函数图像:

image

预测和真实值比较,可以看到效果并不是很好,这个需要自己调参进行变化

image

  • 我的GPU加速时1650还挺快,7.5算力,训练时间可以接受
    image

代码:

# 调用库
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from tensorflow import keras
from tensorflow.keras import layers
from sklearn.preprocessing import MinMaxScaler


#### 数据处理部分 ####

# 读入数据
data = pd.read_excel('BTCtest.xlsx')


# 时间戳长度
time_step = 30 # 输入序列长度

print(len(data))
# 划分训练集与验证集
data = data[['Value']]
train = data[0:1277]
valid = data[1278:1550]
test = data[1551:]



# 归一化
scaler = MinMaxScaler(feature_range=(0, 1))

# datas 切片数据 time_step要输入的维度 pred 预测维度
def scalerClass(datas,scaler,time_step,pred):
    x, y = [], []

    scaled_data = scaler.fit_transform(datas)

    for i in range(time_step, len(datas) - pred):
        x.append(scaled_data[i - time_step:i])
        y.append(scaled_data[i: i + pred])

    # 把x_train转变为array数组
    x, y = np.array(x), np.array(y).reshape(-1, 1)  # reshape(-1,5)的意思时不知道分成多少行,但是是五列
    return x,y



# 训练集 验证集 测试集 切片
x_train,y_train = scalerClass(train,scaler,time_step=time_step,pred=1)
x_valid, y_valid = scalerClass(valid,scaler,time_step=time_step,pred=1)
x_test, y_test = scalerClass(test,scaler,time_step=time_step,pred=1)



#### 建立神经网络模型 ####
model = keras.Sequential()
model.add(layers.LSTM(64, return_sequences=True, input_shape=(x_train.shape[1:])))
model.add(layers.LSTM(128, return_sequences=True))
model.add(layers.LSTM(32))
model.add(layers.Dropout(0.3))
model.add(layers.Dense(1))


# model.compile(optimizer = 优化器,loss = 损失函数, metrics = ["准确率”])
#  “adam"  或者  tf.keras.optimizers.Adam(lr = 学习率,decay = 学习率衰减率)
# ”mse" 或者 tf.keras.losses.MeanSquaredError()
model.compile(optimizer=keras.optimizers.Adam(), loss='mse',metrics=['accuracy'])


# monitor:要监测的数量。
# factor:学习速率降低的因素。new_lr = lr * factor
# patience:没有提升的epoch数,之后学习率将降低。
# verbose:int。0:安静,1:更新消息。
# mode:{auto,min,max}之一。在min模式下,当监测量停止下降时,lr将减少;在max模式下,当监测数量停止增加时,它将减少;在auto模式下,从监测数量的名称自动推断方向。
# min_delta:对于测量新的最优化的阀值,仅关注重大变化。
# cooldown:在学习速率被降低之后,重新恢复正常操作之前等待的epoch数量。
# min_lr:学习率的下限
learning_rate= keras.callbacks.ReduceLROnPlateau(monitor='val_loss', patience=3, factor=0.7, min_lr=0.00000001)

#显示模型结构
model.summary()
# 训练模型
history = model.fit(x_train, y_train,
                    batch_size = 128,
                    epochs=100,
                    validation_data=(x_valid, y_valid),
                    callbacks=[learning_rate])

# loss变化趋势可视化
plt.title('LSTM loss figure')
plt.plot(history.history['loss'],label='training loss')
plt.plot(history.history['val_loss'], label='val loss')
plt.legend(loc='upper right')
plt.show()



#### 预测结果分析&可视化 ####

# 输入测试数据,输出预测结果
y_pred = model.predict(x_test)
# 输入数据和标签,输出损失和精确度
model.evaluate(x_test)
scaler.fit_transform(pd.DataFrame(valid['Value'].values))



# 反归一化
y_pred = scaler.inverse_transform(y_pred.reshape(-1,1)[:,0].reshape(1,-1)) #只取第一列
y_test = scaler.inverse_transform(y_test.reshape(-1,1)[:,0].reshape(1,-1))





# 预测效果可视化

plt.figure(figsize=(16, 8))
plt.title('Predicted and real')
dict = {
    'Predictions': y_pred[0],
    'Value': y_test[0]
}
data_pd = pd.DataFrame(dict)
plt.plot(data_pd[['Value']],linewidth=3,alpha=0.8)
plt.plot(data_pd[['Predictions']],linewidth=1.2)
#plt.savefig('lstm.png', dpi=600)
plt.show()




预测后几天的数据和预测后一天原理是一样的

  • 因为预测的是5天的数据所以不能使用图像显示出来,只能取出预测五天的头一天的数据进行绘图。数据结构可以打印出来的,我没有反归一化,需要的时候再弄把
  • 前五十天预测五天的代码:
# 调用库 
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from tensorflow import keras
from tensorflow.keras import layers
from sklearn.preprocessing import MinMaxScaler

# 读入数据
data = pd.read_excel('BTCtest.xlsx')

time_step = 50 # 输入序列长度


# 划分训练集与验证集
data = data[['Value']]
train = data[0:1277]  #70%
valid = data[1278:1550] #15%
test = data[1551:] #15%

# 归一化
scaler = MinMaxScaler(feature_range=(0, 1))

# 定义一个切片函数
# datas 切片数据 time_step要输入的维度 pred 预测维度
def scalerClass(datas,scaler,time_step,pred):
    x, y = [], []

    scaled_data = scaler.fit_transform(datas)

    for i in range(time_step, len(datas) - pred):
        x.append(scaled_data[i - time_step:i])
        y.append(scaled_data[i: i + pred])

    # 把x_train转变为array数组
    x, y = np.array(x), np.array(y).reshape(-1, 5)  # reshape(-1,5)的意思时不知道分成多少行,但是是五列
    return x,y

# 训练集 验证集 测试集 切片
x_train,y_train = scalerClass(train,scaler,time_step=time_step,pred=5)
x_valid, y_valid = scalerClass(valid,scaler,time_step=time_step,pred=5)
x_test, y_test = scalerClass(test,scaler,time_step=time_step,pred=5)


# 建立网络模型
model = keras.Sequential()
model.add(layers.LSTM(64, return_sequences=True, input_shape=(x_train.shape[1:])))
model.add(layers.LSTM(64, return_sequences=True))
model.add(layers.LSTM(32))
model.add(layers.Dropout(0.1))
model.add(layers.Dense(5))

model.compile(optimizer=keras.optimizers.Adam(), loss='mse',metrics=['accuracy'])
learning_rate_reduction = keras.callbacks.ReduceLROnPlateau(monitor='val_loss', patience=3, factor=0.7, min_lr=0.000000005)

model.summary()
history = model.fit(x_train, y_train,
                    batch_size = 128,
                    epochs=30,
                    validation_data=(x_valid, y_valid),
                    callbacks=[learning_rate_reduction])

# loss变化趋势可视化
plt.title('LSTM loss figure')
plt.plot(history.history['loss'],label='training loss')
plt.plot(history.history['val_loss'], label='val loss')
plt.legend(loc='upper right')
plt.show()

#### 预测结果分析&可视化 ####

y_pred = model.predict(x_test)
model.evaluate(x_test)
scaler.fit_transform(pd.DataFrame(valid['Value'].values))

print(y_pred)
print(y_test)

# 预测效果可视化
# 反归一化
y_pred = scaler.inverse_transform(y_pred.reshape(-1,5)[:,0].reshape(1,-1)) #只取第一列
y_test = scaler.inverse_transform(y_test.reshape(-1,5)[:,0].reshape(1,-1))

plt.figure(figsize=(16, 8))
plt.title('Predicted and real')
dict_data = {
    'Predictions': y_pred.reshape(1,-1)[0],
    'Value': y_test[0]
}
data_pd = pd.DataFrame(dict_data)
plt.plot(data_pd[['Value']],linewidth=3,alpha=0.8)
plt.plot(data_pd[['Predictions']],linewidth=1.2)
plt.savefig('lstm.png', dpi=600)
plt.show()

标签:实战,plt,LSMT,pred,python,step,time,model,data
来源: https://www.cnblogs.com/hjk-airl/p/15961633.html

本站声明: 1. iCode9 技术分享网(下文简称本站)提供的所有内容,仅供技术学习、探讨和分享;
2. 关于本站的所有留言、评论、转载及引用,纯属内容发起人的个人观点,与本站观点和立场无关;
3. 关于本站的所有言论和文字,纯属内容发起人的个人观点,与本站观点和立场无关;
4. 本站文章均是网友提供,不完全保证技术分享内容的完整性、准确性、时效性、风险性和版权归属;如您发现该文章侵犯了您的权益,可联系我们第一时间进行删除;
5. 本站为非盈利性的个人网站,所有内容不会用来进行牟利,也不会利用任何形式的广告来间接获益,纯粹是为了广大技术爱好者提供技术内容和技术思想的分享性交流网站。

专注分享技术,共同学习,共同进步。侵权联系[81616952@qq.com]

Copyright (C)ICode9.com, All Rights Reserved.

ICode9版权所有