ICode9

精准搜索请尝试: 精确搜索
首页 > 编程语言> 文章详细

【Java数据结构与算法】链表 包含:单链表,双向链表,环形链表,约瑟夫问题

2022-02-02 20:59:05  阅读:124  来源: 互联网

标签:单链 Java temp no next 链表 节点 first


链表

链表(Linked List)介绍

在这里插入图片描述
1 链表是以节点的方式来存储,是链式存储
2 每个节点包含 data 域, next 域:指向下一个节点.
3 如图:发现链表的各个节点不一定是连续存储.
4 链表分带头节点的链表和没有头节点的链表,根据实际的需求来确定

在这里插入图片描述

一、单向链表代码实现

public class SingleLinkedListDemo {

    class SingleLinkedList {
        //先初始化一个头节点, 头节点不要动, 不存放具体的数据
        private HeroNode head = new HeroNode(0, "", "");

        //返回头节点
        public HeroNode getHead() {
            return head;
        }

        //添加节点到单向链表
        //思路,当不考虑编号顺序时
        //1. 找到当前链表的最后节点
        //2. 将最后这个节点的next 指向 新的节点
        public void add(HeroNode heroNode) {

            //因为head节点不能动,因此我们需要一个辅助节点来遍历 temp
            HeroNode temp = head;
            //遍历链表,找到最后
            while(true) {
                //找到链表的最后
                if(temp.next == null) {//
                    break;
                }
                //如果没有找到最后, 将将temp后移
                temp = temp.next;
            }
            //当退出while循环时,temp就指向了链表的最后
            //将最后这个节点的next 指向 新的节点
            temp.next = heroNode;
        }

        //第二种方式在添加英雄时,根据排名将英雄插入到指定位置
        //(如果有这个排名,则添加失败,并给出提示)
        public void addByOrder(HeroNode heroNode) {
            //因为头节点不能动,因此我们仍然通过一个辅助指针(变量)来帮助找到添加的位置
            //因为单链表,因为我们找的temp 是位于 添加位置的前一个节点,否则插入不了
            HeroNode temp = head;
            boolean flag = false; // flag标志添加的编号是否存在,默认为false
            while(true) {
                if(temp.next == null) {//说明temp已经在链表的最后
                    break; //
                }
                if(temp.next.no > heroNode.no) { //位置找到,就在temp的后面插入
                    break;
                } else if (temp.next.no == heroNode.no) {//说明希望添加的heroNode的编号已然存在

                    flag = true; //说明编号存在
                    break;
                }
                temp = temp.next; //后移,遍历当前链表
            }
            //判断flag 的值
            if(flag) { //不能添加,说明编号存在
                System.out.printf("准备插入的英雄的编号 %d 已经存在了, 不能加入\n", heroNode.no);
            } else {
                //插入到链表中, temp的后面
                heroNode.next = temp.next;//将原本节点指向的下个节点传给现在新添加的节点
                temp.next = heroNode;//然后再让原本节点指向新添加的节点,这样就完成了一次插入
            }
        }

        //修改节点的信息, 根据no编号来修改,即no编号不能改.
        //说明
        //1. 根据 newHeroNode 的 no 来修改即可
        public void update(HeroNode newHeroNode) {
            //判断是否空
            if(head.next == null) {
                System.out.println("链表为空~");
                return;
            }
            //找到需要修改的节点, 根据no编号
            //定义一个辅助变量
            HeroNode temp = head.next;
            boolean flag = false; //表示是否找到该节点
            while(true) {
                if (temp == null) {
                    break; //已经遍历完链表
                }
                if(temp.no == newHeroNode.no) {
                    //找到
                    flag = true;
                    break;
                }
                temp = temp.next;
            }
            //根据flag 判断是否找到要修改的节点
            if(flag) {
                temp.name = newHeroNode.name;
                temp.nickname = newHeroNode.nickname;
            } else { //没有找到
                System.out.printf("没有找到 编号 %d 的节点,不能修改\n", newHeroNode.no);
            }
        }

        //删除节点
        //思路
        //1. head 不能动,因此我们需要一个temp辅助节点找到待删除节点的前一个节点
        //2. 说明我们在比较时,是temp.next.no 和  需要删除的节点的no比较
        public void del(int no) {
            HeroNode temp = head;
            boolean flag = false; // 标志是否找到待删除节点的
            while(true) {
                if(temp.next == null) { //已经到链表的最后
                    break;
                }
                if(temp.next.no == no) {
                    //找到的待删除节点的前一个节点temp
                    flag = true;
                    break;
                }
                temp = temp.next; //temp后移,遍历
            }
            //判断flag
            if(flag) { //找到
                //可以删除
                temp.next = temp.next.next;
            }else {
                System.out.printf("要删除的 %d 节点不存在\n", no);
            }
        }

        //显示链表[遍历]
        public void list() {
            //判断链表是否为空
            if(head.next == null) {
                System.out.println("链表为空");
                return;
            }
            //因为头节点,不能动,因此我们需要一个辅助变量来遍历
            HeroNode temp = head.next;
            while(true) {
                //判断是否到链表最后
                if(temp == null) {
                    break;
                }
                //输出节点的信息
                System.out.println(temp);
                //将temp后移, 一定小心
                temp = temp.next;
            }
        }
    }


    //定义HeroNode , 每个HeroNode 对象就是一个节点
   static class HeroNode {
        public int no;
        public String name;
        public String nickname;
        public HeroNode next; //指向下一个节点

        //构造器
        public HeroNode(int no, String name, String nickname) {
            this.no = no;
            this.name = name;
            this.nickname = nickname;
        }

        //为了显示方法,我们重新toString
        @Override
        public String toString() {
            return "HeroNode [no=" + no + ", name=" + name + ", nickname=" + nickname + "]";
        }

    }
}

二、单链表面试题

求单链表中有效节点的个数

//方法:获取到单链表的节点的个数(如果是带头结点的链表,需求不统计头节点)
	/**
	 * 
	 * @param head 链表的头节点
	 * @return 返回的就是有效节点的个数
	 */
	public static int getLength(HeroNode head) {
		if(head.next == null) { //空链表
			return 0;
		}
		int length = 0;
		//定义一个辅助的变量, 这里我们没有统计头节点
		HeroNode cur = head.next;
		while(cur != null) {
			length++;
			cur = cur.next; //遍历
		}
		return length;
	}

查找单链表中的倒数第k个结点 【新浪面试题】

//查找单链表中的倒数第k个结点 【新浪面试题】
	//思路
	//1. 编写一个方法,接收head节点,同时接收一个index 
	//2. index 表示是倒数第index个节点
	//3. 先把链表从头到尾遍历,得到链表的总的长度 getLength
	//4. 得到size 后,我们从链表的第一个开始遍历 (size-index)个,就可以得到
	//5. 如果找到了,则返回该节点,否则返回nulll
	public static HeroNode findLastIndexNode(HeroNode head, int index) {
		//判断如果链表为空,返回null
		if(head.next == null) {
			return null;//没有找到
		}
		//第一个遍历得到链表的长度(节点个数)
		int size = getLength(head);
		//第二次遍历  size-index 位置,就是我们倒数的第K个节点
		//先做一个index的校验
		if(index <=0 || index > size) {
			return null; 
		}
		//定义给辅助变量, for 循环定位到倒数的index
		HeroNode cur = head.next; //3 // 3 - 1 = 2
		for(int i =0; i< size - index; i++) {
			cur = cur.next;
		}
		return cur;
	
	}

单链表的反转【腾讯面试题】

方法一:创建新链表来保存数据

在这里插入图片描述

  1. 先定义一个节点 reverseHead = new HeroNode();
  2. 从头到尾遍历原来的链表,每遍历一个节点,就将其取出,并放在新的链表reverseHead 的最前端.
  3. 原来的链表的head.next = reverseHead.next
//将单链表反转
	public static void reversetList(HeroNode head) {
		//如果当前链表为空,或者只有一个节点,无需反转,直接返回
		if(head.next == null || head.next.next == null) {
			return ;
		}
		
		//定义一个辅助的指针(变量),帮助我们遍历原来的链表
		HeroNode cur = head.next;
		HeroNode next = null;// 指向当前节点[cur]的下一个节点
		HeroNode reverseHead = new HeroNode(0, "", "");
		//遍历原来的链表,每遍历一个节点,就将其取出,并放在新的链表reverseHead 的最前端
		//动脑筋
		while(cur != null) { 
			next = cur.next;//先暂时保存当前节点的下一个节点,因为后面需要使用
			cur.next = reverseHead.next;//将cur的下一个节点指向新的链表的最前端
			reverseHead.next = cur; //将cur 连接到新的链表上
			cur = next;//让cur后移
		}
		//将head.next 指向 reverseHead.next , 实现单链表的反转
		head.next = reverseHead.next;
	}

方法二:使用栈的数据结构

//可以利用栈这个数据结构,将各个节点压入到栈中,然后利用栈的先进后出的特点,就实现了逆序打印的效果
	public static void reversePrint(HeroNode head) {
		if(head.next == null) {
			return;//空链表,不能打印
		}
		//创建要给一个栈,将各个节点压入栈
		Stack<HeroNode> stack = new Stack<HeroNode>();
		HeroNode cur = head.next;
		//将链表的所有节点压入栈
		while(cur != null) {
			stack.push(cur);
			cur = cur.next; //cur后移,这样就可以压入下一个节点
		}
		//将栈中的节点进行打印,pop 出栈
		while (stack.size() > 0) {
			System.out.println(stack.pop()); //stack的特点是先进后出
		}
	}

从尾到头打印单链表 【百度,要求方式1:反向遍历 。 方式2:Stack栈】

  1. 上面的题的要求就是逆序打印单链表.
  2. 方式1: 先将单链表进行反转操作,然后再遍历即可,这样的做的问题是会破坏原来的单链表的结构,不建议
  3. 方式2:可以利用栈这个数据结构,将各个节点压入到栈中,然后利用栈的先进后出的特点,就实现了逆序打印的效果.
    举例演示栈的使用 Stack
//可以利用栈这个数据结构,将各个节点压入到栈中,然后利用栈的先进后出的特点,就实现了逆序打印的效果
	public static void reversePrint(HeroNode head) {
		if(head.next == null) {
			return;//空链表,不能打印
		}
		//创建要给一个栈,将各个节点压入栈
		Stack<HeroNode> stack = new Stack<HeroNode>();
		HeroNode cur = head.next;
		//将链表的所有节点压入栈
		while(cur != null) {
			stack.push(cur);
			cur = cur.next; //cur后移,这样就可以压入下一个节点
		}
		//将栈中的节点进行打印,pop 出栈
		while (stack.size() > 0) {
			System.out.println(stack.pop()); //stack的特点是先进后出
		}
	}

三、双向链表

单向链表,查找的方向只能是一个方向,而双向链表可以向前或者向后查找。
单向链表不能自我删除,需要靠辅助节点 ,而双向链表,则可以自我删除,所以前面我们单链表删除时节点,总是找到temp,temp是待删除节点的前一个节点

在这里插入图片描述
分析 双向链表的遍历,添加,修改,删除的操作思路===>代码实现

  1. 遍历 方和 单链表一样,只是可以向前,也可以向后查找
  2. 添加 (默认添加到双向链表的最后)
    (1) 先找到双向链表的最后这个节点
    (2) temp.next = newHeroNode
    (3) newHeroNode.pre = temp;
  3. 修改 思路和 原来的单向链表一样.
  4. 删除
    (1) 因为是双向链表,因此,我们可以实现自我删除某个节点
    (2) 直接找到要删除的这个节点,比如temp
    (3) temp.pre.next = temp.next //将temp上节点的next指向temp的下个节点,相当于直接跳过了temp
    (4) temp.next.pre = temp.pre; //同理将temp下节点的pre指向temp的上个节点
// 创建一个双向链表的类
    static class DoubleLinkedList {
        // 先初始化一个头节点, 头节点不要动, 不存放具体的数据
        private HeroNode2 head = new HeroNode2(0, "", "");

        // 返回头节点
        public HeroNode2 getHead() {
            return head;
        }

        // 遍历双向链表的方法
        // 显示链表[遍历]
        public void list() {
            // 因为头节点,不能动,因此我们需要一个辅助变量来遍历
            HeroNode2 temp = head.next;
            while (true) {
                if (temp == null) {
                    break;
                }
                // 输出节点的信息
                System.out.println(temp);
                // 将temp后移, 一定小心
                temp = temp.next;
            }
        }

        // 添加一个节点到双向链表的最后.
        public void add(HeroNode2 heroNode) {
            HeroNode2 temp = head;
            while (true) {
                if (temp.next == null) {
                    break;
                }
                temp = temp.next;
            }
            // 当退出while循环时,temp就指向了链表的最后
            // 形成一个双向链表

            temp.next = heroNode;
            heroNode.pre = temp;
        }


        //第二种方式在添加英雄时,根据排名将英雄插入到指定位置
        //(如果有这个排名,则添加失败,并给出提示)
        public void addByOrder(HeroNode2 heroNode) {
            //因为头节点不能动,因此我们仍然通过一个辅助指针(变量)来帮助找到添加的位置
            HeroNode2 temp = head;
            boolean flag = false; // flag标志添加的编号是否存在,默认为false
            while(true) {
                if(temp.next == null) {//说明temp已经在链表的最后
                    break; //
                }
                if(temp.next.no > heroNode.no) { //位置找到
                    break;
                } else if (temp.next.no == heroNode.no) {//说明希望添加的heroNode的编号已然存在

                    flag = true; //说明编号存在
                    break;
                }
                temp = temp.next; //后移,遍历当前链表
            }
            //判断flag 的值
            if(flag) { //不能添加,说明编号存在
                System.out.printf("准备插入的英雄的编号 %d 已经存在了, 不能加入\n", heroNode.no);
            } else {
                heroNode.next=temp.next;
                temp.next.pre=heroNode;
                temp.next = heroNode;
                heroNode.pre = temp;
            }
        }

        // 修改一个节点的内容, 可以看到双向链表的节点内容修改和单向链表一样
        public void update(HeroNode2 newHeroNode) {
            // 判断是否空
            if (head.next == null) {
                System.out.println("链表为空~");
                return;
            }
            // 找到需要修改的节点, 根据no编号
            // 定义一个辅助变量
            HeroNode2 temp = head.next;
            boolean flag = false; // 表示是否找到该节点
            while (true) {
                if (temp == null) {
                    break;
                }
                if (temp.no == newHeroNode.no) {
                    // 找到
                    flag = true;
                    break;//直接退出循环
                }

                temp = temp.next;
            }
            // 根据flag 判断是否找到要修改的节点
            if (flag) {
                temp.name = newHeroNode.name;
                temp.nickname = newHeroNode.nickname;
            } else { // 没有找到
                System.out.printf("没有找到 编号 %d 的节点,不能修改\n", newHeroNode.no);
            }
        }

        // 从双向链表中删除一个节点,
        // 说明
        // 1 对于双向链表,我们可以直接找到要删除的这个节点
        // 2 找到后,自我删除即可
        public void del(int no) {

            // 判断当前链表是否为空
            if (head.next == null) {// 空链表
                System.out.println("链表为空,无法删除");
                return;
            }

            HeroNode2 temp = head.next; // 辅助变量(指针)
            boolean flag = false; // 标志是否找到待删除节点的
            while (true) {
                if (temp == null) {
                    break;
                }
                if (temp.no == no) {
                    flag = true;
                    break;
                }
                temp = temp.next;
            }
            // 判断flag
            if (flag){
                temp.pre.next = temp.next;
                // 这里我们的代码有问题?
                // 如果是最后一个节点,就不需要执行下面这句话,否则出现空指针
                if (temp.next != null) {
                    temp.next.pre = temp.pre;
                }else {
                    System.out.printf("要删除的 %d 节点不存在\n", no);
                }
            }

        }
    }

    // 定义HeroNode2 , 每个HeroNode 对象就是一个节点
    static class HeroNode2{
        public int no;
        public String name;
        public String nickname;
        public HeroNode2 next;// 指向下一个节点, 默认为null
        public HeroNode2 pre;//指向上一个节点,默认为null

        public HeroNode2(int no, String name, String nickname) {
            this.no = no;
            this.name = name;
            this.nickname = nickname;
        }

        // 为了显示方法,我们重新toString
        @Override
        public String toString() {
            return "HeroNode [no=" + no + ", name=" + name + ", nickname=" + nickname + "]";
        }
    }

四、单向环形链表与约瑟夫问题

约瑟夫问题描述

Josephu 问题为: 设编号为1,2,… n的n个人围坐一圈,约定编号为k(1<=k<=n)的人从1开始报数,数到m 的那个人出列,它的下一位又从1开始报数,数到m的那个人又出列,依次类推,直到所有人出列为止,由此产生一个出队编号的序列。

提示: 用一个不带头结点的循环链表来处理Josephu 问题:先构成一个有n个结点的单循环链表,然后由k结点起从1开始计数,计到m时,对应结点从链表中删除,然后再从被删除结点的下一个结点又从1开始计数,直到最后一个结点从链表中删除算法结束。

环形链表

在这里插入图片描述
构建一个单向的环形链表思路

  1. 先创建第一个节点, 让 first 指向该节点,并形成环形
  2. 后面当我们每创建一个新的节点,就把该节点,加入到已有的环形链表中即可.

遍历环形链表

  1. 先让一个辅助指针(变量) curBoy,指向first节点
  2. 然后通过一个while循环遍历 该环形链表即可 curBoy.next == first 结束

在这里插入图片描述
根据用户的输入,生成一个小孩出圈的顺序
n = 5 , 即有5个人
k = 1, 从第一个人开始报数
m = 2, 数2下

  1. 需求创建一个辅助指针(变量) helper , 事先应该指向环形链表的最后这个节点.
    补充: 小孩报数前,先让 first 和 helper 移动 k - 1次
  2. 当小孩报数时,让first 和 helper 指针同时 的移动 m - 1 次
  3. 这时就可以将first 指向的小孩节点 出圈
    first = first .next
    helper.next = first
    原来first 指向的节点就没有任何引用,就会被回收

出圈的顺序
2->4->1->5->3

代码实现

public class Josepfu {
    public static void main(String[] args) {
        CircleSingleLinkedList c = new CircleSingleLinkedList();
        c.addBoy(2);
    }
}


// 创建一个环形的单向链表
class CircleSingleLinkedList{
    // 创建一个first节点,当前没有编号
    private Boy first = null;

    // 添加小孩节点,构建成一个环形的链表
    public void addBoy(int nums){
    if (nums < 1){
        System.out.println("nums的值不正确");
        return;
        }
        Boy curBoy = null; // 辅助指针,帮助构建环形链表
        // 使用for来创建我们的环形链表
        for (int i = 1; i <= nums; i++) {
        // 根据编号,创建小孩节点
            Boy boy = new Boy(i);
            if (i == 1){
                first = boy;
                boy.setNext(first);// 构成环
                curBoy = first; // 让curBoy指向第一个小孩
                System.out.println(curBoy == first);
            }else {
                //这里使用了双指针的思想,头指针frist和尾指针curBoy(辅助指针),只是curBoy会随着新节点而往后移
                //curBoy = boy就是这一行代码,让curBoy保持着指向最后,对于curBoy.setNext(boy)这一行代码很妙
                //这里可能会有个疑问:辅助指针指向下一个结点关原本指针指向下一个结点有什么关系?这里是因为curBoy = boy
                //这行代码将boy赋值给curBoy时,其实是将地址也赋值过去了,对象间的赋值,因此这时候的指针就是代表boy这个对象
                //而当辅助指针指向下个节点时,boy这个对象也会指向下一个boy节点。System.out.println(curBoy == first)
                //这行代码结果是true,就是代表curBoy与first都指向同一个地址
                curBoy.setNext(boy);
                boy.setNext(first);
                curBoy = boy;
            }
        }
    }
    // 遍历当前的环形链表
    public void showBoy() {
        // 判断链表是否为空
        if (first == null) {
            System.out.println("没有任何小孩~~");
            return;
        }
        // 因为first不能动,因此我们仍然使用一个辅助指针完成遍历
        Boy curBoy = first;
        while (true) {
            System.out.printf("小孩的编号 %d \n", curBoy.getNo());
            if (curBoy.getNext() == first) {// 说明已经遍历完毕
                break;
            }
            curBoy = curBoy.getNext(); // curBoy后移
        }
    }
    // 根据用户的输入,计算出小孩出圈的顺序
    /**
     *
     * @param startNo
     *            表示从第几个小孩开始数数
     * @param countNum
     *            表示数几下
     * @param nums
     *            表示最初有多少小孩在圈中
     */
    public void countBoy(int startNo, int countNum, int nums){
        // 先对数据进行校验
        if (first == null || startNo < 1 || startNo > nums) {
            System.out.println("参数输入有误, 请重新输入");
            return;
        }
        // 创建要给辅助指针,帮助完成小孩出圈,就是指向尾部,到时候小孩出圈时,这个辅助指针就等于单链表中的temp
        //指针,然后用在辅助指针完成删除节点就是小孩出圈的工作
        Boy helper = first;
        // 需求创建一个辅助指针(变量) helper , 事先应该指向环形链表的最后这个节点
        while (true) {
            if (helper.getNext() == first) { // 说明helper指向最后小孩节点
                break;
            }
            helper = helper.getNext();
        }

        //小孩报数前,先让 first 和  helper 移动 startNo - 1次,因为不能保证从第一个小孩开始报数
        //要先移动到startNo小孩这里来,因为节点其实是从0开始,所以要减一,另外提一嘴,helper就是first前一个
        for(int j = 0; j < startNo - 1; j++) {
            first = first.getNext();
            helper = helper.getNext();
        }

        //当小孩报数时,让first 和 helper 指针同时 的移动  m  - 1 次, 然后出圈
        //这里是一个循环操作,知道圈中只有一个节点
        while (true){
            if (first == helper){//这里代表只剩下一个节点了
                break;
            }
            //让 first 和 helper 指针同时 的移动 countNum - 1
            for(int j = 0; j < countNum - 1; j++){
                first = first.getNext();
                helper = helper.getNext();
            }
            //这时first指向的节点,就是要出圈的小孩节点
            System.out.printf("小孩%d出圈\n", first.getNo());
            first = first.getNext();//将first指针指向下一个节点
            helper.setNext(first);//将helper代表的这个节点指向first,这样就可以把出圈的节点删掉了
        }
        System.out.printf("最后留在圈中的小孩编号%d \n", first.getNo());

    }
}

// 创建一个Boy类,表示一个节点
class Boy {
    private int no;// 编号
    private Boy next; // 指向下一个节点,默认null

    public Boy(int no) {
        this.no = no;
    }

    public int getNo() {
        return no;
    }

    public void setNo(int no) {
        this.no = no;
    }

    public Boy getNext() {
        return next;
    }

    public void setNext(Boy next) {
        this.next = next;
    }

}

标签:单链,Java,temp,no,next,链表,节点,first
来源: https://blog.csdn.net/maikotom/article/details/122766787

本站声明: 1. iCode9 技术分享网(下文简称本站)提供的所有内容,仅供技术学习、探讨和分享;
2. 关于本站的所有留言、评论、转载及引用,纯属内容发起人的个人观点,与本站观点和立场无关;
3. 关于本站的所有言论和文字,纯属内容发起人的个人观点,与本站观点和立场无关;
4. 本站文章均是网友提供,不完全保证技术分享内容的完整性、准确性、时效性、风险性和版权归属;如您发现该文章侵犯了您的权益,可联系我们第一时间进行删除;
5. 本站为非盈利性的个人网站,所有内容不会用来进行牟利,也不会利用任何形式的广告来间接获益,纯粹是为了广大技术爱好者提供技术内容和技术思想的分享性交流网站。

专注分享技术,共同学习,共同进步。侵权联系[81616952@qq.com]

Copyright (C)ICode9.com, All Rights Reserved.

ICode9版权所有