ICode9

精准搜索请尝试: 精确搜索
首页 > 编程语言> 文章详细

基于PSO的运输优化算法的MATLAB仿真

2021-12-16 19:30:01  阅读:199  来源: 互联网

标签:仿真 xnew1 end PSO POS 采集 Num MATLAB Fitness


       假设有一个收集轨道,上面有5个采集堆,这5个采集堆分别被看作一个4*20的矩阵(下面只有4*10),每个模块(比如:A31和A32的元素含量不同),为了达到采集物品数量和元素含量的要求(比如:需采集5吨和某元素单位质量在65与62之间),求出在每个4*20的矩阵中哪个模块被拿出可以达到要求并找出最优化的轨道?(在拿出模块的时候要考虑只有先拿出上面的,才可以采集下面的)

 

已知数据:

1.每个采集堆的元素含量(在excel表格的 sheet 1)

2.每个采集堆里面模块的坐标,长宽高(米为单位)(在excel表格的 sheet 1)

3.元素含量和采集物品数量的要求 (在excel 表格的 sheet 2), 分别有五种不同含量的最大值和最小值, 还有采集数量的要求,以及误差。

4.在轨道左侧的两个采集堆分别是C型号和A型号的,两个采集堆只见距离30m; 轨道右侧的三个采集堆按照顺序分别是B型号,B型号和C型号,同样每个采集堆之间相距20m。5.采集堆形状附在附录1

%根据这个假设,我们设计的思路为当每次运动到一堆的时候,首先在这一堆物品上进行采集,由于
%每堆物品之间的间距远大于每堆内部的各个模块之间的间隔,所以在实际中也不可能在两个不同的
%堆之间来回切换的抓取模块,这也符合我们上面的假设。
%根据上面的假设,我们抓取的顺序为B堆,C堆,A堆,A堆,B堆。
%这里,我们所使用的算法是局部PSO优化,然后再整体PSO优化的算法,即首先通过再每一堆的采集
%的时候进行PSO优化,并使的各个元素含量满足约束的条件下,得到路径最短的采集轨迹,然后通过
%后面三堆重复相同的优化算法,最后第五堆的时候,在做相同的优化前提下,同时检测总量是否满足
%条件,如果不满足进入下一次大迭代循环,然后重复上面的操作,最后得到满足条件的总的采集轨迹。

clc;
clear;
close all;
warning off;
pack;
addpath 'func\'

%**********************************************************************************
%步骤一:调用数据
%步骤一:调用数据
Dat = xlsread('Dat\datas.xlsx');

%分成ABC三组
A_set = Dat( 1:40 ,:);
B_set = Dat(41:80 ,:);
C_set = Dat(81:120,:);


%A相关数据
%坐标
A_POS = A_set(:,1:3);
%元素含量
A_FAC = A_set(:,4:8);
%体积长宽高
A_VUM = A_set(:,9:11);


%B相关数据
%坐标
B_POS = B_set(:,1:3);
%元素含量
B_FAC = B_set(:,4:8);
%体积长宽高
B_VUM = B_set(:,9:11);


%C相关数据
%坐标
C_POS = C_set(:,1:3);
%元素含量
C_FAC = C_set(:,4:8);
%体积长宽高
C_VUM = C_set(:,9:11);


%**************************************************************************
%**************************************************************************

%**********************************************************************************
%步骤二:参数初始化
%步骤二:参数初始化
%约束参数
%59999 ~ 60001
Mass_all = 60000;
Mass_err = 1;
%元素1
Mass1_max= 65;
Mass1_min= 62;
%元素2
Mass2_max= 6;
Mass2_min= 0;
%元素3
Mass3_max= 4;
Mass3_min= 0;
%元素4
Mass4_max= 0.077;
Mass4_min= 0;
%元素5
Mass5_max= 0.1;
Mass5_min= 0;

%优化算法参数
%优化算法参数
%迭代次数
Iteration_all = 1;
Iteration_sub = 10000;
%粒子数目
Num_x     = 200;

%密度
P         = 2.1;
%计算各个模块的质量,单位t
%注意,本课题一个堆中有个四个形状的模块,即三角形,三种梯形,所以我们根据长宽高以及对应的形状计算体积,从而计算质量
A_Vulome = func_cal_volume(A_VUM);
B_Vulome = func_cal_volume(B_VUM);
C_Vulome = func_cal_volume(C_VUM);
%计算每个采集堆的各个模块的质量
A_mass   = P*A_Vulome;
B_mass   = P*B_Vulome;
C_mass   = P*C_Vulome;

%以下根据实际轨迹上的堆的分布来设置
maxs_sets = [B_mass;C_mass;A_mass;A_mass;B_mass];
FAC_sets  = [B_FAC;C_FAC;A_FAC;A_FAC;B_FAC];


%**************************************************************************
%**************************************************************************

%**********************************************************************************
%步骤三:开始优化运算
%步骤三:开始优化运算
X_pos{1} = B_POS(:,1);
Y_pos{1} = B_POS(:,2);
Z_pos{1} = B_POS(:,3);

X_pos{2} = C_POS(:,1);
Y_pos{2} = C_POS(:,2);
Z_pos{2} = C_POS(:,3);

X_pos{3} = A_POS(:,1);
Y_pos{3} = A_POS(:,2);
Z_pos{3} = A_POS(:,3);

X_pos{4} = A_POS(:,1);
Y_pos{4} = A_POS(:,2);
Z_pos{4} = A_POS(:,3);

X_pos{5} = B_POS(:,1);
Y_pos{5} = B_POS(:,2);
Z_pos{5} = B_POS(:,3);


%先通过PSO优化需求模型
for Num_pso = 4:40%这里没有必要设置太大,设置大了需求量肯定会超过60000,因此,这个值得大小根据需求量来确定,大概范围即可
    Num_pso
    x = zeros(Num_x,Num_pso);
    
    i = 0;
    
    %产生能够满足采集规则的随机粒子数据
    for jj = 1:Num_x
        %产生随机数的时候,必须是先采集第一层,然后才采集第二层,依次类推
        %第1层
        index1 = [1:10,41:50,81:90,121:130,161:170];
        %第2层
        index2 = [1:10,41:50,81:90,121:130,161:170]+10;
        %第3层
        index3 = [1:10,41:50,81:90,121:130,161:170]+20;
        %第4层
        index4 = [1:10,41:50,81:90,121:130,161:170]+30;
        
        %根据采集规则产生随机数
        %根据采集规则产生随机数
        %根据采集规则产生随机数
        index  = [index1;index2;index3;index4];

        i = 0;
        while i < Num_pso
            i = i + 1;
            if i> 1
                for j = 1:50;
                    index(IS(j),ind(1)) = 9999;
                end
            end

            for j = 1:50;
                [VS,IS(j)] = min(index(:,j));
                tmps(1,j)  = index(IS(j),j);
            end
            ind  = randperm(40);
            a(i) = tmps(ind(1));
            if a(i) == 9999
               i = i-1;
            end
        end

        x(jj,:) = a; 

    end
    
    
    n             = Num_pso;  
    F             = fitness_mass(x,maxs_sets,Mass_all);
    Fitness_tmps1 = F(1);
    Fitness_tmps2 = 1;
    
    for i=1:Num_x
        if Fitness_tmps1 >= F(i)
           Fitness_tmps1 =  F(i);
           Fitness_tmps2 =  i;
        end
    end
    xuhao      = Fitness_tmps2;
    Tour_pbest = x;                        %当前个体最优
    Tour_gbest = x(xuhao,:) ;              %当前全局最优路径
    Pb         = inf*ones(1,Num_x);        %个体最优记录
    Gb         = F(Fitness_tmps2);         %群体最优记录
    xnew1      = x;
    N          = 1;
    
    while N <= Iteration_sub
        %计算适应度 
        F = fitness_mass(x,maxs_sets,Mass_all);
        for i=1:Num_x
            if F(i)<Pb(i)
               %将当前值赋给新的最佳值
               Pb(i)=F(i);      
               Tour_pbest(i,:)=x(i,:);
            end
            
            if F(i)<Gb
               Gb=F(i);
               Tour_gbest=x(i,:);
            end
        end

        Fitness_tmps1 = Pb(1);
        Fitness_tmps2 = 1;
        
        for i=1:Num_x
            if Fitness_tmps1>=Pb(i)
               Fitness_tmps1=Pb(i);
               Fitness_tmps2=i;
            end
        end
        
        nummin = Fitness_tmps2;
        %当前群体最优需求量差
        Gb(N)  = Pb(nummin);   
        
        for i=1:Num_x
            %与个体最优进行交叉
            c1 = round(rand*(n-2))+1;  
            c2 = round(rand*(n-2))+1;
            while c1==c2
                  c1 = round(rand*(n-2))+1;
                  c2 = round(rand*(n-2))+1;
            end   
            chb1 = min(c1,c2);
            chb2 = max(c1,c2);
            cros = Tour_pbest(i,chb1:chb2); 
            %交叉区域元素个数
            ncros= size(cros,2);       
            %删除与交叉区域相同元素
            for j=1:ncros
                for k=1:n
                    if xnew1(i,k)==cros(j)
                       xnew1(i,k)=0;
                       for t=1:n-k
                           temp=xnew1(i,k+t-1);
                           xnew1(i,k+t-1)=xnew1(i,k+t);
                           xnew1(i,k+t)=temp;
                       end
                    end
                end
            end
            xnew = xnew1;
            %插入交叉区域
            for j=1:ncros
                xnew1(i,n-ncros+j) = cros(j);
            end
            %判断产生需求量差是否变小
            masses=0;
            masses = sum(maxs_sets(xnew1(i,:)));
            if F(i)>masses
               x(i,:) = xnew1(i,:);
            end
 
            %与全体最优进行交叉
            c1 = round(rand*(n-2))+1;  
            c2 = round(rand*(n-2))+1;
            while c1==c2
                  c1=round(rand*(n-2))+1; 
                  c2=round(rand*(n-2))+1;
            end   
            chb1 = min(c1,c2);
            chb2 = max(c1,c2);
            %交叉区域矩阵
            cros = Tour_gbest(chb1:chb2); 
            %交叉区域元素个数
            ncros= size(cros,2);       
            %删除与交叉区域相同元素
            for j=1:ncros
                for k=1:n
                    if xnew1(i,k)==cros(j)
                       xnew1(i,k)=0;
                       for t=1:n-k
                           temp=xnew1(i,k+t-1);
                           xnew1(i,k+t-1)=xnew1(i,k+t);
                           xnew1(i,k+t)=temp;
                       end                 
                    end
                end
            end
            xnew = xnew1;
            %插入交叉区域
            for j=1:ncros
                xnew1(i,n-ncros+j) = cros(j);
            end
            %判断产生需求量差是否变小
            masses=0;
            masses = sum(maxs_sets(xnew1(i,:)));
            if F(i)>masses
              x(i,:)=xnew1(i,:);
            end
            %进行变异操作
            c1          = round(rand*(n-1))+1;  
            c2          = round(rand*(n-1))+1;
            temp        = xnew1(i,c1);
            xnew1(i,c1) = xnew1(i,c2);
            xnew1(i,c2) = temp;
            %判断产生需求量差是否变小
            masses=0;
            masses = sum(maxs_sets(xnew1(i,:)));

            if F(i)>masses
               x(i,:)=xnew1(i,:);
            end
        end

        Fitness_tmps1=F(1);
        Fitness_tmps2=1;
        for i=1:Num_x
           if Fitness_tmps1>=F(i)
              Fitness_tmps1=F(i);
              Fitness_tmps2=i;
           end
        end
        xuhao      = Fitness_tmps2;
        L_best(N)  = min(F);
        %当前全局最优需求量
        Tour_gbest = x(xuhao,:);     
        N          = N + 1;
        
    end
    %判断含量是否满足要求
    for ii = 1:5
        Fac_tmps(ii) = sum(FAC_sets(Tour_gbest,ii)'.*maxs_sets(Tour_gbest))/sum(maxs_sets(Tour_gbest));
    end
    
    if (Fac_tmps(1) >= Mass1_min & Fac_tmps(1) <= Mass1_max) &...
       (Fac_tmps(2) >= Mass2_min & Fac_tmps(2) <= Mass2_max) &...
       (Fac_tmps(3) >= Mass3_min & Fac_tmps(3) <= Mass3_max) &...
       (Fac_tmps(4) >= Mass4_min & Fac_tmps(4) <= Mass4_max) &... 
       (Fac_tmps(5) >= Mass5_min & Fac_tmps(5) <= Mass5_max)
       flag(Num_pso-3) = 1;
    else
       flag(Num_pso-3) = 0; 
    end
    Mass_fig(Num_pso-3)  = min(L_best);
    Mass_Index{Num_pso-3}= Tour_gbest ;
end

figure;
plot(Mass_fig,'b-o');
xlabel('采集模块个数');
ylabel('需求量计算值和标准需求量的差值关系图');

save temp\result1.mat Mass_fig Mass_Index flag

最后得到的优化记过,即满足条件下的最短轨迹长度

A-06-10

 

标签:仿真,xnew1,end,PSO,POS,采集,Num,MATLAB,Fitness
来源: https://blog.csdn.net/ccsss22/article/details/121982050

本站声明: 1. iCode9 技术分享网(下文简称本站)提供的所有内容,仅供技术学习、探讨和分享;
2. 关于本站的所有留言、评论、转载及引用,纯属内容发起人的个人观点,与本站观点和立场无关;
3. 关于本站的所有言论和文字,纯属内容发起人的个人观点,与本站观点和立场无关;
4. 本站文章均是网友提供,不完全保证技术分享内容的完整性、准确性、时效性、风险性和版权归属;如您发现该文章侵犯了您的权益,可联系我们第一时间进行删除;
5. 本站为非盈利性的个人网站,所有内容不会用来进行牟利,也不会利用任何形式的广告来间接获益,纯粹是为了广大技术爱好者提供技术内容和技术思想的分享性交流网站。

专注分享技术,共同学习,共同进步。侵权联系[81616952@qq.com]

Copyright (C)ICode9.com, All Rights Reserved.

ICode9版权所有