ICode9

精准搜索请尝试: 精确搜索
首页 > 编程语言> 文章详细

c++11 多线程编程(五)------unique_lock

2021-12-01 22:02:31  阅读:228  来源: 互联网

标签:11 std 多线程 do lock guard something unique


互斥锁保证了线程间的同步,但是却将并行操作变成了串行操作,这对性能有很大的影响,所以我们要尽可能的减小锁定的区域,也就是使用细粒度锁

这一点lock_guard做的不好,不够灵活,lock_guard只能保证在析构的时候执行解锁操作,lock_guard本身并没有提供加锁和解锁的接口,但是有些时候会有这种需求。看下面的例子。

class LogFile {
    std::mutex _mu;
    ofstream f;
public:
    LogFile() {
        f.open("log.txt");
    }
    ~LogFile() {
        f.close();
    }
    void shared_print(string msg, int id) {
        {
            std::lock_guard<std::mutex> guard(_mu);
            //do something 1
        }
        //do something 2
        {
            std::lock_guard<std::mutex> guard(_mu);
            // do something 3
            f << msg << id << endl;
            cout << msg << id << endl;
        }
    }

};

上面的代码中,一个函数内部有两段代码需要进行保护,这个时候使用lock_guard就需要创建两个局部对象来管理同一个互斥锁(其实也可以只创建一个,但是锁的力度太大,效率不行),修改方法是使用unique_lock。它提供了lock()unlock()接口,能记录现在处于上锁还是没上锁状态,在析构的时候,会根据当前状态来决定是否要进行解锁(lock_guard就一定会解锁)。上面的代码修改如下:

class LogFile {
    std::mutex _mu;
    ofstream f;
public:
    LogFile() {
        f.open("log.txt");
    }
    ~LogFile() {
        f.close();
    }
    void shared_print(string msg, int id) {

        std::unique_lock<std::mutex> guard(_mu);
        //do something 1
        guard.unlock(); //临时解锁

        //do something 2

        guard.lock(); //继续上锁
        // do something 3
        f << msg << id << endl;
        cout << msg << id << endl;
        // 结束时析构guard会临时解锁
        // 这句话可要可不要,不写,析构的时候也会自动执行
        // guard.ulock();
    }

};

上面的代码可以看到,在无需加锁的操作时,可以先临时释放锁,然后需要继续保护的时候,可以继续上锁,这样就无需重复的实例化lock_guard对象,还能减少锁的区域。同样,可以使用std::defer_lock设置初始化的时候不进行默认的上锁操作:

void shared_print(string msg, int id) {
    std::unique_lock<std::mutex> guard(_mu, std::defer_lock);
    //do something 1

    guard.lock();
    // do something protected
    guard.unlock(); //临时解锁

    //do something 2

    guard.lock(); //继续上锁
    // do something 3
    f << msg << id << endl;
    cout << msg << id << endl;
    // 结束时析构guard会临时解锁
}

这样使用起来就比lock_guard更加灵活!然后这也是有代价的,因为它内部需要维护锁的状态,所以效率要比lock_guard低一点,在lock_guard能解决问题的时候,就是用lock_guard,反之,使用unique_lock

后面在学习条件变量的时候,还会有unique_lock的用武之地。

另外,请注意,unique_locklock_guard都不能复制,lock_guard不能移动,但是unique_lock可以!

// unique_lock 可以移动,不能复制
std::unique_lock<std::mutex> guard1(_mu);
std::unique_lock<std::mutex> guard2 = guard1;  // error
std::unique_lock<std::mutex> guard2 = std::move(guard1); // ok

// lock_guard 不能移动,不能复制
std::lock_guard<std::mutex> guard1(_mu);
std::lock_guard<std::mutex> guard2 = guard1;  // error
std::lock_guard<std::mutex> guard2 = std::move(guard1); // error

参考

  1. C++并发编程实战
  2. C++ Threading #5: Unique Lock and Lazy Initialization

标签:11,std,多线程,do,lock,guard,something,unique
来源: https://blog.csdn.net/weixin_42398658/article/details/121647460

本站声明: 1. iCode9 技术分享网(下文简称本站)提供的所有内容,仅供技术学习、探讨和分享;
2. 关于本站的所有留言、评论、转载及引用,纯属内容发起人的个人观点,与本站观点和立场无关;
3. 关于本站的所有言论和文字,纯属内容发起人的个人观点,与本站观点和立场无关;
4. 本站文章均是网友提供,不完全保证技术分享内容的完整性、准确性、时效性、风险性和版权归属;如您发现该文章侵犯了您的权益,可联系我们第一时间进行删除;
5. 本站为非盈利性的个人网站,所有内容不会用来进行牟利,也不会利用任何形式的广告来间接获益,纯粹是为了广大技术爱好者提供技术内容和技术思想的分享性交流网站。

专注分享技术,共同学习,共同进步。侵权联系[81616952@qq.com]

Copyright (C)ICode9.com, All Rights Reserved.

ICode9版权所有