ICode9

精准搜索请尝试: 精确搜索
首页 > 编程语言> 文章详细

数据结构与算法-178~184-迪杰斯特拉(Dijkstra)算法

2021-11-07 21:31:20  阅读:180  来源: 互联网

标签:index matrix int 迪杰 算法 184 65535 顶点 public


178 迪杰斯特拉(Dijkstra)算法基本介绍

最短路径问题

在这里插入图片描述

介绍
迪杰斯特拉(Dijkstra)算法是典型最短路径算法,用于计算一个结点到其他结点的最短路径。它主要特点是以起始点为中心向外层层扩展(广度优先搜索思想),直到扩展到终点为止。

过程
设置出发顶点为 v 顶点集合V[v1, v2, vi…] v 到 V 中各顶点的距离构成距离集合 Dis, Dis[d1, d2, di…],Dis集合记录着 v 到图中各顶点的距离(到自身可以看作 0,v 到 vi 距离对应为 di)

  1. 从 Dis 中选择值最小的 di 并移出 Dis 集合,同时移出 v 集合中对应的顶点 vi ,此时的 v 到 vi 即为最短路径
  2. 更新 Dis 集合,更新规则为: 比较 v 到 V 集合中顶点的距离值,与 v 通过 vi 到 V 集合中顶点的距离值,保留值较小的一个(同时也应该更新顶点的前驱节点为 vi,表明是通过 vi 到达的)
  3. 重复执行两步骤,直到最短路径顶点为目标顶点即可结束

179 Dijkstra 算法思路图解

180 Dijkstra 算法解决最短路径问题 1

package com.old.dijkstra_178_184;

import java.util.Arrays;

public class DijkstraAlgorithm {
    public static void main(String[] args) {
        char[] vertex = {'A', 'B', 'C', 'D', 'E', 'F', 'G',};

        //邻接矩阵
        int[][] matrix = new int[vertex.length][vertex.length];

        //表示不可连接
        final int N = 65535;
        matrix[0] = new int[]{N, 5, 7, N, N, N, 2};
        matrix[1] = new int[]{5, N, N, 9, N, N, 3};
        matrix[2] = new int[]{7, N, N, N, 8, N, N};
        matrix[3] = new int[]{N, 9, N, N, N, 4, N};
        matrix[4] = new int[]{N, N, 8, N, N, 5, 4};
        matrix[5] = new int[]{N, N, N, 4, 5, N, 6};
        matrix[6] = new int[]{2, 3, N, N, 4, 6, N};


        //创建 Graph
        Graph graph = new Graph(vertex, matrix);
        graph.showGraph();


    }
}


class Graph {
    //顶点数组
    private char[] vertex;
    //邻接矩阵
    private int[][] matrix;

    public Graph(char[] vertex, int[][] matrix) {
        this.vertex = vertex;
        this.matrix = matrix;
    }

    //显示图
    public void showGraph() {
        for (int[] ints : matrix) {
            System.out.println(Arrays.toString(ints));
        }
    }
}
[65535, 5, 7, 65535, 65535, 65535, 2]
[5, 65535, 65535, 9, 65535, 65535, 3]
[7, 65535, 65535, 65535, 8, 65535, 65535]
[65535, 9, 65535, 65535, 65535, 4, 65535]
[65535, 65535, 8, 65535, 65535, 5, 4]
[65535, 65535, 65535, 4, 5, 65535, 6]
[2, 3, 65535, 65535, 4, 6, 65535]

181-184 Dijkstra 算法解决最短路径问题 2-5

package com.old.dijkstra_178_184;

import java.util.Arrays;

public class DijkstraAlgorithm {
    public static void main(String[] args) {
        char[] vertex = {'A', 'B', 'C', 'D', 'E', 'F', 'G',};

        //邻接矩阵
        int[][] matrix = new int[vertex.length][vertex.length];

        //表示不可连接
        final int N = 65535;
        matrix[0] = new int[]{N, 5, 7, N, N, N, 2};
        matrix[1] = new int[]{5, N, N, 9, N, N, 3};
        matrix[2] = new int[]{7, N, N, N, 8, N, N};
        matrix[3] = new int[]{N, 9, N, N, N, 4, N};
        matrix[4] = new int[]{N, N, 8, N, N, 5, 4};
        matrix[5] = new int[]{N, N, N, 4, 5, N, 6};
        matrix[6] = new int[]{2, 3, N, N, 4, 6, N};

        //创建 Graph
        Graph graph = new Graph(vertex, matrix);
        graph.showGraph();

        graph.dsj(6);

        graph.showDijkstra();

    }
}


class Graph {
    //顶点数组
    private char[] vertex;

    //邻接矩阵
    private int[][] matrix;

    //表示已经访问的顶点的集合
    private VisitedVertex vv;

    public Graph(char[] vertex, int[][] matrix) {
        this.vertex = vertex;
        this.matrix = matrix;
    }

    //显示结果
    public void showDijkstra() {
        vv.show();
    }

    //显示图
    public void showGraph() {
        for (int[] ints : matrix) {
            System.out.println(Arrays.toString(ints));
        }
    }

    /**
     * 迪杰斯特拉算法实现
     *
     * @param index 表示出发前顶点对应的下标
     */
    public void dsj(int index) {
        this.vv = new VisitedVertex(vertex.length, index);
        //更新 index 顶点到周围顶点的距离和前驱顶点
        update(index);
        for (int j = 1; j < vertex.length; j++) {
            //选择并返回新的访问顶点
            index = vv.updateArr();
            //更新 index 顶点到周围顶点的距离和前驱顶点
            update(index);
        }
    }

    //更新 index 下标顶点到周围顶点的距离和周围顶点的前驱顶点
    private void update(int index) {
        int len = 0;
        //根据遍历邻接矩阵 matrix[index] 行
        for (int j = 0; j < matrix[index].length; j++) {
            //len 含义是:出发顶点到 index 顶点的距离 + 从 index 顶点到 j 顶点的距离的和
            len = vv.getDis(index) + matrix[index][j];
            //如果 j 顶点没有被访问过,并且 len 小于出发顶点到 j 顶点的距离,就需要更新
            if (!vv.isVisited(j) && len < vv.getDis(j)) {
                //更新 j 顶点的前戏为 index 顶点
                vv.updatePre(j, index);
                //更新出发顶点到 j 顶点的距离
                vv.updateDis(j, len);
            }
        }
    }
}

class VisitedVertex {
    // 记录各个顶点是否访问过 1表示访问过,0未访问,会动态更新
    public int[] already_arr;
    // 每个下标对应的值为前一个顶点下标, 会动态更新
    public int[] pre_visited;
    // 记录出发顶点到其他所有顶点的距离,比如G为出发顶点,就会记录G到其它顶点的距离,会动态更新,求的最短距离就会存放到dis
    public int[] dis;

    //构造器
    /**
     *
     * @param length :表示顶点的个数
     * @param index: 出发顶点对应的下标, 比如G顶点,下标就是6
     */
    public VisitedVertex(int length, int index) {
        this.already_arr = new int[length];
        this.pre_visited = new int[length];
        this.dis = new int[length];
        // 初始化 dis数组
        Arrays.fill(dis, 65535);
        this.dis[index] = 0;// 设置出发顶点的访问距离为0
        this.already_arr[index] = 1; // 设置出发顶点被访问过

    }

    /**
     * 功能: 判断index顶点是否被访问过
     * @param index
     * @return 如果访问过,就返回true, 否则访问false
     */
    public boolean isVisited(int index) {
        return already_arr[index] == 1;
    }

    /**
     * 功能: 更新出发顶点到index顶点的距离
     * @param index
     * @param len
     */
    public void updateDis(int index, int len) {
        dis[index] = len;
    }

    /**
     * 功能: 更新pre这个顶点的前驱顶点为index顶点
     * @param pre
     * @param index
     */
    public void updatePre(int pre, int index) {
        pre_visited[pre] = index;
    }

    /**
     * 功能:返回出发顶点到index顶点的距离
     * @param index
     */
    public int getDis(int index) {
        return dis[index];
    }


    /**
     * 继续选择并返回新的访问顶点, 比如这里的G 完后,就是 A点作为新的访问顶点(注意不是出发顶点)
     * @return
     */
    public int updateArr() {
        int min = 65535, index = 0;
        for (int i = 0; i < already_arr.length; i++) {
            if (already_arr[i] == 0 && dis[i] < min) {
                min = dis[i];
                index = i;
            }
        }
        // 更新 index 顶点被访问过
        already_arr[index] = 1;
        return index;
    }

    //显示最后的结果
    //即将三个数组的情况输出
    public void show() {
        System.out.println("核心数组的值如下:");
        // 输出already_arr
        for (int i : already_arr) {
            System.out.print(i + " ");
        }
        System.out.println();
        // 输出dis
        for (int i : dis) {
            System.out.print(i + " ");
        }
        System.out.println();
        // 输出pre_visited
        for (int i : pre_visited) {
            System.out.print(i + " ");
        }
        System.out.println();

        // 为了好看最后的最短距离,我们处理
        char[] vertex = { 'A', 'B', 'C', 'D', 'E', 'F', 'G' };
        int count = 0;
        for (int i : dis) {
            if (i != 65535) {
                System.out.print(vertex[count] + "(" + i + ") ");
            } else {
                System.out.print("N ");
            }
            count++;
        }
        System.out.println();
        System.out.println();
    }

}


另一篇博客的代码
地址

package com.old.dijkstra_178_184;

import java.util.Arrays;

public class T2 {
    public static void main(String[] args) {

        char[] vertex = { 'A', 'B', 'C', 'D', 'E', 'F', 'G' };
        // 邻接矩阵
        int[][] matrix = new int[vertex.length][vertex.length];
        final int N = 65535;// 表示不可以连接
        matrix[0] = new int[] { N, 5, 7, N, N, N, 2 };
        matrix[1] = new int[] { 5, N, N, 9, N, N, 3 };
        matrix[2] = new int[] { 7, N, N, N, 8, N, N };
        matrix[3] = new int[] { N, 9, N, N, N, 4, N };
        matrix[4] = new int[] { N, N, 8, N, N, 5, 4 };
        matrix[5] = new int[] { N, N, N, 4, 5, N, 6 };
        matrix[6] = new int[] { 2, 3, N, N, 4, 6, N };
        // 创建 Graph对象
        Graph graph = new Graph(vertex, matrix);
        // 测试, 看看图的邻接矩阵是否ok
        graph.showGraph();
        // 测试迪杰斯特拉算法
        graph.dsj(6);// G

    }

}

class Graph {
    private char[] vertex; // 顶点数组
    private int[][] matrix; // 邻接矩阵
    private VisitedVertex vv; // 已经访问的顶点的集合

    // 构造器
    public Graph(char[] vertex, int[][] matrix) {
        this.vertex = vertex;
        this.matrix = matrix;
    }

    // 显示结果
    public void showDijkstra() {
        vv.showArrays();
    }

    // 显示图
    public void showGraph() {
        for (int[] link : matrix) {
            for (int i : link) {
                System.out.printf("%8d", i);
            }
            System.out.println();
        }
    }

    //迪杰斯特拉算法实现
    /**
     *
     * @param index 表示出发顶点对应的下标
     */
    public void dsj(int index) {
        vv = new VisitedVertex(vertex.length, index);
        update(index);// 更新index顶点到周围顶点的距离和前驱顶点
        vv.showArrays();
        for (int j = 1; j < vertex.length; j++) {
            index = vv.findNextStartPoint();// 选择并返回新的访问顶点
            update(index); // 更新index顶点到周围顶点的距离和前驱顶点
            vv.showArrays();
        }
    }

    // 更新index下标顶点到周围顶点的距离和周围顶点的前驱顶点,
    private void update(int index) {
        int len = 0;
        // 根据遍历我们的邻接矩阵的 matrix[index]行
        for (int j = 0; j < matrix[index].length; j++) {
            // len 含义是 : 出发顶点到index顶点的距离 + 从index顶点到j顶点的距离的和
            len = vv.getDis(index) + matrix[index][j];
            // 如果j顶点没有被访问过,并且 len 小于出发顶点到j顶点的距离,就需要更新
            if (!vv.isVisited(j) && len < vv.getDis(j)) {
                vv.updatePre(j, index); // 更新j顶点的前驱为index顶点
                vv.updateDis(j, len); // 更新出发顶点到j顶点的距离
            }
        }
    }
}

// 已访问顶点集合
class VisitedVertex {
    // 记录各个顶点是否访问过 1表示访问过,0未访问,会动态更新
    public int[] already_arr;
    // 每个下标对应的值为前一个顶点下标, 会动态更新
    public int[] pre_visited;
    // 记录出发顶点到其他所有顶点的距离,比如G为出发顶点,就会记录G到其它顶点的距离,会动态更新,求的最短距离就会存放到dis
    public int[] dis;

    //构造器
    /**
     *
     * @param length :表示顶点的个数
     * @param index: 出发顶点对应的下标, 比如G顶点,下标就是6
     */
    public VisitedVertex(int length, int index) {
        this.already_arr = new int[length];
        this.pre_visited = new int[length];
        this.dis = new int[length];
        // 初始化 dis数组
        Arrays.fill(dis, 65535);
        this.dis[index] = 0;// 设置出发顶点的访问距离为0
        this.already_arr[index] = 1; // 设置出发顶点被访问过

    }

    /**
     * 功能: 判断index顶点是否被访问过
     * @param index
     * @return 如果访问过,就返回true, 否则访问false
     */
    public boolean isVisited(int index) {
        return already_arr[index] == 1;
    }

    /**
     * 功能: 更新出发顶点到index顶点的距离
     * @param index
     * @param len
     */
    public void updateDis(int index, int len) {
        dis[index] = len;
    }

    /**
     * 功能: 更新pre这个顶点的前驱顶点为index顶点
     * @param pre
     * @param index
     */
    public void updatePre(int pre, int index) {
        pre_visited[pre] = index;
    }

    /**
     * 功能:返回出发顶点到index顶点的距离
     * @param index
     */
    public int getDis(int index) {
        return dis[index];
    }


    /**
     * 继续选择并返回新的访问顶点, 比如这里的G 完后,就是 A点作为新的访问顶点(注意不是出发顶点)
     * @return
     */
    public int findNextStartPoint() {
        int min = 65535, index = 0;
        for (int i = 0; i < already_arr.length; i++) {
            if (already_arr[i] == 0 && dis[i] < min) {
                min = dis[i];
                index = i;
            }
        }
        // 更新 index 顶点被访问过
        already_arr[index] = 1;
        return index;
    }

    //显示最后的结果
    //即将三个数组的情况输出
    public void showArrays() {
        System.out.println("核心数组的值如下:");
        // 输出already_arr
        for (int i : already_arr) {
            System.out.print(i + " ");
        }
        System.out.println();
        // 输出dis
        for (int i : dis) {
            System.out.print(i + " ");
        }
        System.out.println();
        // 输出pre_visited
        for (int i : pre_visited) {
            System.out.print(i + " ");
        }
        System.out.println();

        // 为了好看最后的最短距离,我们处理
        char[] vertex = { 'A', 'B', 'C', 'D', 'E', 'F', 'G' };
        int count = 0;
        for (int i : dis) {
            if (i != 65535) {
                System.out.print(vertex[count] + "(" + i + ") ");
            } else {
                System.out.print("N ");
            }
            count++;
        }
        System.out.println();
        System.out.println();
    }

}

标签:index,matrix,int,迪杰,算法,184,65535,顶点,public
来源: https://blog.csdn.net/m0_46998705/article/details/112724509

本站声明: 1. iCode9 技术分享网(下文简称本站)提供的所有内容,仅供技术学习、探讨和分享;
2. 关于本站的所有留言、评论、转载及引用,纯属内容发起人的个人观点,与本站观点和立场无关;
3. 关于本站的所有言论和文字,纯属内容发起人的个人观点,与本站观点和立场无关;
4. 本站文章均是网友提供,不完全保证技术分享内容的完整性、准确性、时效性、风险性和版权归属;如您发现该文章侵犯了您的权益,可联系我们第一时间进行删除;
5. 本站为非盈利性的个人网站,所有内容不会用来进行牟利,也不会利用任何形式的广告来间接获益,纯粹是为了广大技术爱好者提供技术内容和技术思想的分享性交流网站。

专注分享技术,共同学习,共同进步。侵权联系[81616952@qq.com]

Copyright (C)ICode9.com, All Rights Reserved.

ICode9版权所有