ICode9

精准搜索请尝试: 精确搜索
首页 > 编程语言> 文章详细

pytorch源码解析系列-yolov4最核心技巧代码详解(3)- 训练过程

2021-09-24 17:06:21  阅读:258  来源: 互联网

标签:loss yolov4 anchors self torch pytorch 源码 truth output


补一下源码地址
我们先从简单的开始说起,怎么判断loss?IOU(交并比)

IOU

yolov4用了CIOU_loss 和DIOU_LOSS
简单说一下,有个具体了解,都是从左到右发展来的

IOUGIOUDIOUCIOU
作用主要考虑检测框和目标框重叠面积在IOU的基础上,解决边界框不重合时的问题在IOU和GIOU的基础上,考虑边界框中心点距离的信息在DIOU的基础上,考虑边界框宽高比的尺度信息
具体实现交并比加了一个尺度相交(两个矩形外接最大矩形)GIOU+欧式距离/中心点距离DIOU+长宽比

看代码就更直观了解他们的运作方式了

if GIoU or DIoU or CIoU:
        if GIoU: #area_c 就是外接矩形
            area_c = torch.prod(con_br - con_tl, 2)  # br tl对应button right和 top left坐标,这个公式就是算最小外接矩形面积
            return iou - (area_c - area_u) / area_c  # GIoU的公式,
        if DIoU or CIoU: 
        	#c2就是欧式距离 加一个小偏置防止除数为0
            c2 = torch.pow(con_br - con_tl, 2).sum(dim=2) + 1e-16
            if DIoU:
            #rho2 就是中心点距离 rho2 = ((bboxes_a[:, None, :2] - bboxes_b[:, :2]) ** 2 / 4).sum(dim=-1)
                return iou - rho2 / c2  # DIoU 的计算公式 加了个中心点距离/欧氏距离
            elif CIoU:  
            #这个V是长宽比
                v = (4 / math.pi ** 2) * torch.pow(torch.atan(w1 / h1).unsqueeze(1) - torch.atan(w2 / h2), 2)
                with torch.no_grad():
                    alpha = v / (1 - iou + v)
                return iou - (rho2 / c2 + v * alpha)  # CIoU 可以看到比Diou多了个长宽比因素
    return iou

如果对上述参数不了解,可以参考一下源代码,这里贴太多反而容易混淆

Loss function

CIOU懂了 那么CIOU loss呢
其实就是CIOU loss = (1-CIOU)
GIOU,CIOU等同理

那么yolo怎么计算loss的呢
偷一下cuijiahua大佬的图
在这里插入图片描述
很复杂 看不懂?
没关系 实际上就是 三个loss组成的
如果有物体 就要加上: 坐标框损失,置信度损失,分类类别损失
大概知道什么意思 然后去看代码就可以了:在这里插入图片描述

代码很长 可以只看我注释的地方 方便了解大体作用

class Yolo_loss(nn.Module):
    def __init__(self, n_classes=80, n_anchors=3, device=None, batch=2):
        super(Yolo_loss, self).__init__()
        # 这些老参数了 看我上一章内容都有
        self.device = device
        self.strides = [8, 16, 32]
        image_size = 608
        self.n_classes = n_classes
        self.n_anchors = n_anchors

        self.anchors = [[12, 16], [19, 36], [40, 28], [36, 75], [76, 55], [72, 146], [142, 110], [192, 243], [459, 401]]
        self.anch_masks = [[0, 1, 2], [3, 4, 5], [6, 7, 8]]
        self.ignore_thre = 0.5

        self.masked_anchors, self.ref_anchors, self.grid_x, self.grid_y, self.anchor_w, self.anchor_h = [], [], [], [], [], []
		#遍历三个anchor框 这下面代码在之前都出现过 具体就是初始化那些anchor
        for i in range(3):
            all_anchors_grid = [(w / self.strides[i], h / self.strides[i]) for w, h in self.anchors]
            masked_anchors = np.array([all_anchors_grid[j] for j in self.anch_masks[i]], dtype=np.float32)
            ref_anchors = np.zeros((len(all_anchors_grid), 4), dtype=np.float32)
            ref_anchors[:, 2:] = np.array(all_anchors_grid, dtype=np.float32)
            ref_anchors = torch.from_numpy(ref_anchors)
            # calculate pred - xywh obj cls
            fsize = image_size // self.strides[i]
            grid_x = torch.arange(fsize, dtype=torch.float).repeat(batch, 3, fsize, 1).to(device)
            grid_y = torch.arange(fsize, dtype=torch.float).repeat(batch, 3, fsize, 1).permute(0, 1, 3, 2).to(device)
            anchor_w = torch.from_numpy(masked_anchors[:, 0]).repeat(batch, fsize, fsize, 1).permute(0, 3, 1, 2).to(
                device)
            anchor_h = torch.from_numpy(masked_anchors[:, 1]).repeat(batch, fsize, fsize, 1).permute(0, 3, 1, 2).to(
                device)

            self.masked_anchors.append(masked_anchors)
            self.ref_anchors.append(ref_anchors)
            self.grid_x.append(grid_x)
            self.grid_y.append(grid_y)
            self.anchor_w.append(anchor_w)
            self.anchor_h.append(anchor_h)

    def build_target(self, pred, labels, batchsize, fsize, n_ch, output_id):
        # 目标注册 tgt最后一维是4 对应除p外的标签
        # (B,3,f,f,4)
        tgt_mask = torch.zeros(batchsize, self.n_anchors, fsize, fsize, 4 + self.n_classes).to(device=self.device)
        # (B,3,f,f)
        obj_mask = torch.ones(batchsize, self.n_anchors, fsize, fsize).to(device=self.device)
        tgt_scale = torch.zeros(batchsize, self.n_anchors, fsize, fsize, 2).to(self.device)
        target = torch.zeros(batchsize, self.n_anchors, fsize, fsize, n_ch).to(self.device)

        # labels = labels.cpu().data
        nlabel = (labels.sum(dim=2) > 0).sum(dim=1)  #label数量统计
		# label对应的是x,y,w,h 所以X=x+w,Y=y+h  下面宽高还要除以步长
        truth_x_all = (labels[:, :, 2] + labels[:, :, 0]) / (self.strides[output_id] * 2)
        truth_y_all = (labels[:, :, 3] + labels[:, :, 1]) / (self.strides[output_id] * 2)
        truth_w_all = (labels[:, :, 2] - labels[:, :, 0]) / self.strides[output_id]
        truth_h_all = (labels[:, :, 3] - labels[:, :, 1]) / self.strides[output_id]
        truth_i_all = truth_x_all.to(torch.int16).cpu().numpy() 
        truth_j_all = truth_y_all.to(torch.int16).cpu().numpy()

        for b in range(batchsize):
            n = int(nlabel[b])
            if n == 0:
                continue
            truth_box = torch.zeros(n, 4).to(self.device)
            truth_box[:n, 2] = truth_w_all[b, :n]
            truth_box[:n, 3] = truth_h_all[b, :n]
            truth_i = truth_i_all[b, :n]
            truth_j = truth_j_all[b, :n]

            # calculate iou between truth and reference anchors
            anchor_ious_all = bboxes_iou(truth_box.cpu(), self.ref_anchors[output_id], CIoU=True)

            # temp = bbox_iou(truth_box.cpu(), self.ref_anchors[output_id])

            best_n_all = anchor_ious_all.argmax(dim=1)
            best_n = best_n_all % 3
            best_n_mask = ((best_n_all == self.anch_masks[output_id][0]) |
                           (best_n_all == self.anch_masks[output_id][1]) |
                           (best_n_all == self.anch_masks[output_id][2]))

            if sum(best_n_mask) == 0:
                continue

            truth_box[:n, 0] = truth_x_all[b, :n]
            truth_box[:n, 1] = truth_y_all[b, :n]

            pred_ious = bboxes_iou(pred[b].view(-1, 4), truth_box, xyxy=False)
            pred_best_iou, _ = pred_ious.max(dim=1)
            pred_best_iou = (pred_best_iou > self.ignore_thre)
            pred_best_iou = pred_best_iou.view(pred[b].shape[:3])
            # set mask to zero (ignore) if pred matches truth
            obj_mask[b] = ~ pred_best_iou

            for ti in range(best_n.shape[0]):
                if best_n_mask[ti] == 1:
                    i, j = truth_i[ti], truth_j[ti]
                    a = best_n[ti]
                    obj_mask[b, a, j, i] = 1
                    tgt_mask[b, a, j, i, :] = 1
                    target[b, a, j, i, 0] = truth_x_all[b, ti] - truth_x_all[b, ti].to(torch.int16).to(torch.float)
                    target[b, a, j, i, 1] = truth_y_all[b, ti] - truth_y_all[b, ti].to(torch.int16).to(torch.float)
                    target[b, a, j, i, 2] = torch.log(
                        truth_w_all[b, ti] / torch.Tensor(self.masked_anchors[output_id])[best_n[ti], 0] + 1e-16)
                    target[b, a, j, i, 3] = torch.log(
                        truth_h_all[b, ti] / torch.Tensor(self.masked_anchors[output_id])[best_n[ti], 1] + 1e-16)
                    target[b, a, j, i, 4] = 1
                    target[b, a, j, i, 5 + labels[b, ti, 4].to(torch.int16).cpu().numpy()] = 1
                    tgt_scale[b, a, j, i, :] = torch.sqrt(2 - truth_w_all[b, ti] * truth_h_all[b, ti] / fsize / fsize)
        return obj_mask, tgt_mask, tgt_scale, target

    def forward(self, xin, labels=None):
        loss, loss_xy, loss_wh, loss_obj, loss_cls, loss_l2 = 0, 0, 0, 0, 0, 0
        for output_id, output in enumerate(xin):
            batchsize = output.shape[0]
            fsize = output.shape[2]
            n_ch = 5 + self.n_classes

            output = output.view(batchsize, self.n_anchors, n_ch, fsize, fsize)
            output = output.permute(0, 1, 3, 4, 2)  # .contiguous()

            # logistic activation for xy, obj, cls
            output[..., np.r_[:2, 4:n_ch]] = torch.sigmoid(output[..., np.r_[:2, 4:n_ch]])

            pred = output[..., :4].clone()
            pred[..., 0] += self.grid_x[output_id]
            pred[..., 1] += self.grid_y[output_id]
            pred[..., 2] = torch.exp(pred[..., 2]) * self.anchor_w[output_id]
            pred[..., 3] = torch.exp(pred[..., 3]) * self.anchor_h[output_id]

            obj_mask, tgt_mask, tgt_scale, target = self.build_target(pred, labels, batchsize, fsize, n_ch, output_id)

            # loss calculation
            output[..., 4] *= obj_mask
            output[..., np.r_[0:4, 5:n_ch]] *= tgt_mask
            output[..., 2:4] *= tgt_scale

            target[..., 4] *= obj_mask
            target[..., np.r_[0:4, 5:n_ch]] *= tgt_mask
            target[..., 2:4] *= tgt_scale

            loss_xy += F.binary_cross_entropy(input=output[..., :2], target=target[..., :2],
                                              weight=tgt_scale * tgt_scale, reduction='sum')
            loss_wh += F.mse_loss(input=output[..., 2:4], target=target[..., 2:4], reduction='sum') / 2
            loss_obj += F.binary_cross_entropy(input=output[..., 4], target=target[..., 4], reduction='sum')
            loss_cls += F.binary_cross_entropy(input=output[..., 5:], target=target[..., 5:], reduction='sum')
            loss_l2 += F.mse_loss(input=output, target=target, reduction='sum')

        loss = loss_xy + loss_wh + loss_obj + loss_cls

        return loss, loss_xy, loss_wh, loss_obj, loss_cls, loss_l2

今天累了 代码写到这 后续补完

标签:loss,yolov4,anchors,self,torch,pytorch,源码,truth,output
来源: https://blog.csdn.net/weixin_48174100/article/details/120453223

本站声明: 1. iCode9 技术分享网(下文简称本站)提供的所有内容,仅供技术学习、探讨和分享;
2. 关于本站的所有留言、评论、转载及引用,纯属内容发起人的个人观点,与本站观点和立场无关;
3. 关于本站的所有言论和文字,纯属内容发起人的个人观点,与本站观点和立场无关;
4. 本站文章均是网友提供,不完全保证技术分享内容的完整性、准确性、时效性、风险性和版权归属;如您发现该文章侵犯了您的权益,可联系我们第一时间进行删除;
5. 本站为非盈利性的个人网站,所有内容不会用来进行牟利,也不会利用任何形式的广告来间接获益,纯粹是为了广大技术爱好者提供技术内容和技术思想的分享性交流网站。

专注分享技术,共同学习,共同进步。侵权联系[81616952@qq.com]

Copyright (C)ICode9.com, All Rights Reserved.

ICode9版权所有