ICode9

精准搜索请尝试: 精确搜索
  • 【预测模型】基于Logistic混沌映射改进的麻雀搜索算法SSA优化BP神经网络回归预测matlab代码2021-11-28 21:35:13

    1 简介 针对麻雀搜索算法(SSA)在迭代后期种群多样性减少,易陷入局部最优等难题,提出了一种基于Logistic混沌映射的改进麻雀算法(LCSSA).利用Logistic混沌映射初始化种群,提高了初始解的质量,增加了种群多样性,利用线性递减权重法,降低了群体智能算法容易早熟的风险,避免算法后期

  • 【预测模型】基于Logistic混沌映射改进的麻雀搜索算法SSA优化BP神经网络回归预测matlab代码2021-11-28 21:32:04

    1 简介 针对麻雀搜索算法(SSA)在迭代后期种群多样性减少,易陷入局部最优等难题,提出了一种基于Logistic混沌映射的改进麻雀算法(LCSSA).利用Logistic混沌映射初始化种群,提高了初始解的质量,增加了种群多样性,利用线性递减权重法,降低了群体智能算法容易早熟的风险,避免算法后期

  • The sequence 2 攻略 (第30-39关)2021-11-25 22:03:46

    今天通关了,分享一下我的通关方法。   第四名是我。总体难度还行,不过后边有几关如果想不到正确方法会卡壳,有点难受,甚至怀疑到底这一关有没有正确解法。但是当那一关最终通过的时候,卡的有多难受,心情就有多爽 ^ ^    前边30关太简单了,从第30关开始。有的解法并不是最优解,欢迎大家

  • The sequence 2 攻略 (第40-49关)2021-11-25 22:03:17

    按照顺序 40---49            

  • The sequence 2 攻略 (第50-59关)2021-11-25 22:02:51

    按照顺序  50----59            

  • The sequence 2 攻略 (第60-69关)2021-11-25 22:02:28

    按照顺序 60----69            

  • The sequence 2 攻略 (第70-79关)2021-11-25 22:02:17

    按照顺序   70----79            

  • The sequence 2 攻略 (第80-89关)2021-11-25 22:01:47

    按照顺序 80----89                       

  • The sequence 2 攻略 (第90-99关)2021-11-25 22:01:33

    按照顺序  90-----99            

  • The sequence 2 攻略 (第100-109关)2021-11-25 22:01:23

    按照顺序 100----109            

  • The sequence 2 攻略 (第110-121关)2021-11-25 22:00:48

    按照顺序 110----121               

  • 【零基础-2】PaddlePaddle学习Bert2021-11-24 21:33:05

    概要 【零基础-1】PaddlePaddle学习Bert_ 一只博客-CSDN博客https://blog.csdn.net/qq_42276781/article/details/121488335 Cell 3 # 调用bert模型用的tokenizer tokenizer = ppnlp.transformers.BertTokenizer.from_pretrained('bert-base-chinese') inputs_1 = tokenizer('今

  • Transformer2021-11-21 23:04:59

    胡乱写的!!!!!! 目录 一、初探Encoder-Decoder 1.Encoder 2.回到transformer的图 二、Decoder – Autoregressive (AT) 1、Decoder内部结构 1)带Masked的MHA 三、Decoder – Non-autoregressive (NAT) 四、Encoder-Decoder 五、Training 六、训练的Tips 一、初探Encoder-Decoder 一

  • (23)UVM 层次化sequence构建方式(layering sequence)2021-11-21 09:03:18

    UVM 层次化sequence构建方式(layering sequence) 文章目录 UVM 层次化sequence构建方式(layering sequence)layering sequence介绍layering sequence示例layering sequence解析 关注作者 layering sequence介绍 如果我们在构建更加复杂的协议总线传输,例如PCIe,USB3.0等,那

  • Python报错 “UnicodeDecodeError: ‘gb2312’ codec can’t decode byte 0xa4 in position… : illegal multibyte2021-11-20 21:31:25

    一、报错场景 使用python遇到报错:“UnicodeDecodeError: ‘gb2312’ codec can’t decode byte 0xa4 in position… : illegal multibyte sequence”一般有如下两种场景: 1.爬取中文网站内容 html = requests.get(url).decode("gb2312") 2.读取gbk编码的文件 result = open(f

  • (21)UVM 虚拟类序列(virtual sequence)2021-11-20 09:03:52

    UVM 虚拟类序列(virtual sequence) 文章目录 UVM 虚拟类序列(virtual sequence)virtual sequence介绍virtual存在对于sequence和sequencer的改变virtual sequence示例virtual sequence示例解析virtual sequence建议 关注作者 在上一节中,已经讲过了层次类序列(hierarchica

  • (19)UVM 史上最强sequence相关宏操作总结2021-11-19 09:06:31

    史上最强sequence相关宏操作总结 文章目录 史上最强sequence相关宏操作总结一、序列宏二、序列宏的实例三、为什么会锁住sqr?四、sequencer的仲裁机制五、sequencer的锁定机制六、sequencer的锁定示例七、sequencer的锁定示例解析 关注作者 一、序列宏 下面一段代码是对st

  • sql server自增主键变为非自增,sequence控制id值2021-11-18 18:02:42

    之前使用的表的主键为id自增,现在想变成由sequence来控制id值的增加,不能删除现有数据,数据一直保持在数据库中。 之前的schema: create table biz_job_history ( id BIGINT identity not null , job_id VARCHAR(32) , start_time DATETIME2 , end_time DATETIME2 , status

  • (17)UVM sequencer和driver2021-11-18 09:31:07

    UVM sequencer和driver 文章目录 UVM sequencer和driver一、概述二、端口和方法三、事务传输实例四、事务传输过程分析五、通信时序六、握手建议 关注作者 一、概述 driver同sequencer之间的TLM通信采取了get模式,即由driver发起请求,从sequencer一端获得item,再由sequenc

  • 篇5-uvm_component/uvm_sequence_item常用函数解读2021-11-16 17:32:13

    资料来源: (1)公众号-杰瑞IC验证; 1.uvm_component相关函数 1.1.uvm_component中get_name()系列函数 (1) get_name()会打印出”u_jerry_so_cool”(实例名); (2) get_full_name()会打印出”uvm_test_top.u_jerry_env.u_jerry_so_cool”(路径名字); (3) get_type_name()会打印出

  • UVM实战 卷I学习笔记9——UVM中的sequence(6)2021-11-16 11:03:00

    目录 在sequence中使用config_db*在sequence中获取参数*在sequence中设置参数*wait_modified的使用response的使用*put_response与get_responseresponse的数量问题*response handler与另类的response*rsp与req类型不同 在sequence中使用config_db *在sequence中获取参

  • 2021-11-122021-11-12 12:31:52

    深度学习“NumpyArrayIterator” object has no attribute 'shape’报错解决办法 问题描述: 在进行深度学习训练时,出现“NumpyArrayIterator” object has no attribute 'shape’的报错 原因分析: 修改…\Python\Python36\Lib\site-packages\tensorflow_core\python\keras\engi

  • attention, transformer2021-11-11 16:05:08

    这啥呀,慢慢啃 最初来源于 NLP 机器翻译的 Sequence to Sequence 模型,早先的encoder-decoder结构随着句子长度增加翻译性能会下降,因为模型记不住太长的句子。人类翻译的直观的感觉是看一部分翻译一部分,只关心要翻译的那一小部分,这个就是attention的原理。而transformer是基于attent

  • odoo 列表tree视图 拖拽排序(自定义排序方式)2021-11-11 12:00:03

    实现效果: 实现方式: 模型中定义字段: class CusYourModel(models.Model): """ 你的模型 """ _name = 'xxxxxxx' _order = "sequence, id" sequence = fields.Integer(string='Sequence') 前端view视图增加相应字段: <tr

  • 2020 ICPC 澳门站 G - Game on Sequence 题解2021-11-10 12:32:22

    题面看这里 题目大意 给你一个长度为 n 的数组 a,Grammy 和 Alice 用这个数组玩个小游(bo)戏(yi),游戏规则如下: 对于每局游戏,先选定一个位置 \(k\) 为起点,\(\rm Grammy\) 先手,轮流操作,每次操作都可以从当前位置 \(i\) 跳到后面的某个位置 \(j\),\(j\) 满足 \(a_i\)​​​ 和 \(a_j\)​

专注分享技术,共同学习,共同进步。侵权联系[admin#icode9.com]

Copyright (C)ICode9.com, All Rights Reserved.

ICode9版权所有