ICode9

精准搜索请尝试: 精确搜索
首页 > 其他分享> 文章详细

Formelsammlung Mathematik: Bestimmte Integrale: Form R(x,log,Gamma)

2021-05-05 03:33:04  阅读:266  来源: 互联网

标签:Integrale frac log Form int dx pi Gamma


 

0.1Bearbeiten
{\displaystyle \int _{0}^{1}\log \Gamma (x)\,dx=\log {\sqrt {2\pi }}}{\displaystyle \int _{0}^{1}\log \Gamma (x)\,dx=\log {\sqrt {2\pi }}}
1. Beweis

{\displaystyle 2\int _{0}^{1}\log \Gamma (x)\,dx=\int _{0}^{1}\log \Gamma (x)\,dx+\int _{0}^{1}\log \Gamma (1-x)\,dx=\int _{0}^{1}\log {\Big (}\Gamma (x)\,\Gamma (1-x){\Big )}\,dx}{\displaystyle 2\int _{0}^{1}\log \Gamma (x)\,dx=\int _{0}^{1}\log \Gamma (x)\,dx+\int _{0}^{1}\log \Gamma (1-x)\,dx=\int _{0}^{1}\log {\Big (}\Gamma (x)\,\Gamma (1-x){\Big )}\,dx}

{\displaystyle =\int _{0}^{1}\log \left({\frac {\pi }{\sin \pi x}}\right)dx=\log \pi -\int _{0}^{1}\log \sin \pi x\,dx=\log \pi +\log 2\,\Rightarrow \,\int _{0}^{1}\log \Gamma (x)\,dx={\frac {1}{2}}\log(2\pi )}{\displaystyle =\int _{0}^{1}\log \left({\frac {\pi }{\sin \pi x}}\right)dx=\log \pi -\int _{0}^{1}\log \sin \pi x\,dx=\log \pi +\log 2\,\Rightarrow \,\int _{0}^{1}\log \Gamma (x)\,dx={\frac {1}{2}}\log(2\pi )}

2. Beweis

Die Riemannsche Approximationssumme {\displaystyle \sum _{k=1}^{n-1}\log \Gamma \!\left({\frac {k}{n}}\right)\cdot {\frac {1}{n}}}{\displaystyle \sum _{k=1}^{n-1}\log \Gamma \!\left({\frac {k}{n}}\right)\cdot {\frac {1}{n}}} vereinfacht sich zu

{\displaystyle \log \left(\prod _{k=1}^{n-1}\Gamma \!\left({\frac {k}{n}}\right)\right)\cdot {\frac {1}{n}}=\log \left({\frac {{\sqrt {2\pi }}^{\,n-1}}{\sqrt {n}}}\right)\cdot {\frac {1}{n}}={\frac {(n-1)\log {\sqrt {2\pi }}-\log {\sqrt {n}}}{n}}}{\displaystyle \log \left(\prod _{k=1}^{n-1}\Gamma \!\left({\frac {k}{n}}\right)\right)\cdot {\frac {1}{n}}=\log \left({\frac {{\sqrt {2\pi }}^{\,n-1}}{\sqrt {n}}}\right)\cdot {\frac {1}{n}}={\frac {(n-1)\log {\sqrt {2\pi }}-\log {\sqrt {n}}}{n}}},

und konvergiert daher gegen {\displaystyle \log {\sqrt {2\pi }}}{\displaystyle \log {\sqrt {2\pi }}} für {\displaystyle n\to \infty \,}n\to \infty \,.

 
0.2Bearbeiten
{\displaystyle \int _{1/4}^{3/4}\log \Gamma (x)\,dx={\frac {1}{2}}\left(\log {\sqrt {2\pi }}-{\frac {G}{\pi }}\right)}{\displaystyle \int _{1/4}^{3/4}\log \Gamma (x)\,dx={\frac {1}{2}}\left(\log {\sqrt {2\pi }}-{\frac {G}{\pi }}\right)}
1. Beweis

{\displaystyle I:=\int _{1/4}^{3/4}\log \Gamma (x)\,dx=\int _{1/4}^{3/4}\log \Gamma (1-x)\,dx}{\displaystyle I:=\int _{1/4}^{3/4}\log \Gamma (x)\,dx=\int _{1/4}^{3/4}\log \Gamma (1-x)\,dx}

{\displaystyle \Rightarrow \,2I=\int _{1/4}^{3/4}\log {\Big (}\Gamma (x)\Gamma (1-x){\Big )}\,dx=\int _{1/4}^{3/4}\log \left({\frac {\pi }{\sin \pi x}}\right)dx={\frac {1}{2}}\log \pi -\int _{1/4}^{3/4}\log(\sin \pi x)\,dx}{\displaystyle \Rightarrow \,2I=\int _{1/4}^{3/4}\log {\Big (}\Gamma (x)\Gamma (1-x){\Big )}\,dx=\int _{1/4}^{3/4}\log \left({\frac {\pi }{\sin \pi x}}\right)dx={\frac {1}{2}}\log \pi -\int _{1/4}^{3/4}\log(\sin \pi x)\,dx},

wobei {\displaystyle \int _{1/4}^{3/4}\log(\sin \pi x)\,dx=\int _{-1/4}^{1/4}\log(\cos \pi x)\,dx=2\int _{0}^{1/4}\log(\cos \pi x)\,dx}{\displaystyle \int _{1/4}^{3/4}\log(\sin \pi x)\,dx=\int _{-1/4}^{1/4}\log(\cos \pi x)\,dx=2\int _{0}^{1/4}\log(\cos \pi x)\,dx} {\displaystyle ={\frac {1}{\pi }}\int _{0}^{\frac {\pi }{2}}\log \left(\cos {\frac {x}{2}}\right)dx={\frac {G}{\pi }}-{\frac {1}{2}}\log 2}{\displaystyle ={\frac {1}{\pi }}\int _{0}^{\frac {\pi }{2}}\log \left(\cos {\frac {x}{2}}\right)dx={\frac {G}{\pi }}-{\frac {1}{2}}\log 2} ist.

Also ist {\displaystyle 2I={\frac {1}{2}}\log(2\pi )-{\frac {G}{\pi }}}{\displaystyle 2I={\frac {1}{2}}\log(2\pi )-{\frac {G}{\pi }}}.

2. Beweis

Für {\displaystyle 0\leq x\leq 1}{\displaystyle 0\leq x\leq 1} betrachte folgende Rechteck-Impuls-Funktion:

{\displaystyle f(x)={\frac {4}{\pi }}\sum _{k=0}^{\infty }{\frac {(-1)^{k}}{2k+1}}\,\cos {\Big (}(2k+1)\,2\pi x{\Big )}=\left\{{\begin{matrix}+1&&0\leq x<{\frac {1}{4}}\,\vee \,{\frac {3}{4}}<x\leq 1\\\\0&&x={\frac {1}{4}}\,\vee \,x={\frac {3}{4}}\\\\-1&&{\frac {1}{4}}<x<{\frac {3}{4}}\end{matrix}}\right.}

{\displaystyle \int _{0}^{1}\log \Gamma (x)\,f(x)\,dx={\frac {4}{\pi }}\sum _{k=0}^{\infty }{\frac {(-1)^{k}}{2k+1}}\int _{0}^{1}\log \Gamma (x)\,\cos {\Big (}(2k+1)\,2\pi x{\Big )}dx={\frac {4}{\pi }}\sum _{k=0}^{\infty }{\frac {(-1)^{k}}{2k+1}}\,{\frac {1}{4\,(2k+1)}}={\frac {G}{\pi }}}{\displaystyle \int _{0}^{1}\log \Gamma (x)\,f(x)\,dx={\frac {4}{\pi }}\sum _{k=0}^{\infty }{\frac {(-1)^{k}}{2k+1}}\int _{0}^{1}\log \Gamma (x)\,\cos {\Big (}(2k+1)\,2\pi x{\Big )}dx={\frac {4}{\pi }}\sum _{k=0}^{\infty }{\frac {(-1)^{k}}{2k+1}}\,{\frac {1}{4\,(2k+1)}}={\frac {G}{\pi }}}

Aus den Gleichungen

{\displaystyle {\text{I.}}\,\quad \int _{0}^{1/4}\log \Gamma (x)\,dx+\int _{1/4}^{3/4}\log \Gamma (x)\,dx+\int _{3/4}^{1}\log \Gamma (x)\,dx=\log {\sqrt {2\pi }}}{\displaystyle {\text{I.}}\,\quad \int _{0}^{1/4}\log \Gamma (x)\,dx+\int _{1/4}^{3/4}\log \Gamma (x)\,dx+\int _{3/4}^{1}\log \Gamma (x)\,dx=\log {\sqrt {2\pi }}}

{\displaystyle {\text{II.}}\quad \int _{0}^{1/4}\log \Gamma (x)\,dx-\int _{1/4}^{3/4}\log \Gamma (x)\,dx+\int _{3/4}^{1}\log \Gamma (x)\,dx={\frac {G}{\pi }}}{\displaystyle {\text{II.}}\quad \int _{0}^{1/4}\log \Gamma (x)\,dx-\int _{1/4}^{3/4}\log \Gamma (x)\,dx+\int _{3/4}^{1}\log \Gamma (x)\,dx={\frac {G}{\pi }}}

folgt     {\displaystyle 2\int _{1/4}^{3/4}\log \Gamma (x)\,dx=\log {\sqrt {2\pi }}-{\frac {G}{\pi }}}{\displaystyle 2\int _{1/4}^{3/4}\log \Gamma (x)\,dx=\log {\sqrt {2\pi }}-{\frac {G}{\pi }}}.

 
1.1Bearbeiten
{\displaystyle \int _{u}^{u+1}\log \Gamma (x)\,dx=u\,{\Big (}\log(u)-1{\Big )}+\log {\sqrt {2\pi }}\qquad u>0}{\displaystyle \int _{u}^{u+1}\log \Gamma (x)\,dx=u\,{\Big (}\log(u)-1{\Big )}+\log {\sqrt {2\pi }}\qquad u>0}
Beweis (Raabesche Formel)

{\displaystyle \int _{u}^{u+1}\log \Gamma (x)\,dx=\int _{0}^{u+1}\log \Gamma (x)\,dx-\int _{0}^{u}\log \Gamma (x)\,dx}{\displaystyle \int _{u}^{u+1}\log \Gamma (x)\,dx=\int _{0}^{u+1}\log \Gamma (x)\,dx-\int _{0}^{u}\log \Gamma (x)\,dx}

{\displaystyle =\int _{0}^{1}\log \Gamma (x)\,dx+\int _{1}^{u+1}\log \Gamma (x)\,dx-\int _{0}^{u}\log \Gamma (x)\,dx}{\displaystyle =\int _{0}^{1}\log \Gamma (x)\,dx+\int _{1}^{u+1}\log \Gamma (x)\,dx-\int _{0}^{u}\log \Gamma (x)\,dx}

{\displaystyle =\log {\sqrt {2\pi }}+\int _{0}^{u}\log \Gamma (x+1)\,dx-\int _{0}^{u}\log \Gamma (x)\,dx}{\displaystyle =\log {\sqrt {2\pi }}+\int _{0}^{u}\log \Gamma (x+1)\,dx-\int _{0}^{u}\log \Gamma (x)\,dx}.

Wegen {\displaystyle \log \Gamma (x+1)-\log \Gamma (x)=\log x\,}{\displaystyle \log \Gamma (x+1)-\log \Gamma (x)=\log x\,} ist

{\displaystyle \int _{0}^{u}\log \Gamma (x+1)dx-\int _{0}^{u}\log \Gamma (x)dx=u\,{\Big (}\log(u)-1{\Big )}}{\displaystyle \int _{0}^{u}\log \Gamma (x+1)dx-\int _{0}^{u}\log \Gamma (x)dx=u\,{\Big (}\log(u)-1{\Big )}}.

标签:Integrale,frac,log,Form,int,dx,pi,Gamma
来源: https://www.cnblogs.com/Eufisky/p/14730823.html

本站声明: 1. iCode9 技术分享网(下文简称本站)提供的所有内容,仅供技术学习、探讨和分享;
2. 关于本站的所有留言、评论、转载及引用,纯属内容发起人的个人观点,与本站观点和立场无关;
3. 关于本站的所有言论和文字,纯属内容发起人的个人观点,与本站观点和立场无关;
4. 本站文章均是网友提供,不完全保证技术分享内容的完整性、准确性、时效性、风险性和版权归属;如您发现该文章侵犯了您的权益,可联系我们第一时间进行删除;
5. 本站为非盈利性的个人网站,所有内容不会用来进行牟利,也不会利用任何形式的广告来间接获益,纯粹是为了广大技术爱好者提供技术内容和技术思想的分享性交流网站。

专注分享技术,共同学习,共同进步。侵权联系[81616952@qq.com]

Copyright (C)ICode9.com, All Rights Reserved.

ICode9版权所有