ICode9

精准搜索请尝试: 精确搜索
首页 > 其他分享> 文章详细

ARM体系架构下的同步操作

2021-04-07 11:59:08  阅读:238  来源: 互联网

标签:__ ... 架构 sync ptr 同步操作 内存地址 type ARM


处理器在访问共享资源时,必须对临界区进行同步,即保证同一时间内,只有一个对临界区的访问者。当共享资源为一内存地址时,原子操作是对该类型共享资源同步访问的最佳方式。随着应用的日益复杂和SMP的广泛使用,处理器都开始提供硬件同步原语以支持原子地更新内存地址。

CISC处理器比如IA32,可以提供单独的多种原子指令完成复杂的原子操作,由处理器保证读-修改-写回过程的原子性。而RISC则不同,由于除Load和Store的所有操作都必须在寄存器中完成,如何保证从装载内存地址到寄存器,到修改寄存器中的值,再到将寄存器中的值写回内存中可以原子性的完成,便成为了处理器设计的关键。

从ARMv6架构开始,ARM处理器提供了Exclusive accesses同步原语,包含两条指令: LDREX STREX LDREX和STREX指令,将对一个内存地址的原子操作拆分成两个步骤,同处理器内置的记录exclusive accesses的exclusive monitors一起,完成对内存的原子操作。

LDREX

LDREX与LDR指令类似,完成将内存中的数据加载进寄存器的操作。与LDR指令不同的是,该指令也会同时初始化exclusive monitor来记录对该地址的同步访问。例如

 

1
LDREX R1, [R0]

会将R0寄存器中内存地址的数据,加载进R1中并更新exclusive monitor。

STREX

该指令的格式为:

 

1
STREX Rd, Rm, [Rn]

STREX会根据exclusive monitor的指示决定是否将寄存器中的值写回内存中。如果exclusive monitor许可这次写入,则STREX会将寄存器Rm的值写回Rn所存储的内存地址中,并将Rd寄存器设置为0表示操作成功。如果exclusive monitor禁止这次写入,则STREX指令会将Rd寄存器的值设置为1表示操作失败并放弃这次写入。应用程序可以根据Rd中的值来判断写回是否成功。

在下面部分中,我会以Linux Kernel中如何编写原子操作代码具体介绍LDREX和STREX的使用方法,并介绍gcc提供的ARM架构下的关于这两条指令的C语言扩展。

为了实现对内存地址同步访问而引入的 LDREX STREX 两条指令。在这篇文章里,首先会以Linux Kernel中ARM架构的原子相加操作为例,介绍这两条指令的使用方法;之后,会介绍GCC提供的一些内置函数,这些同步函数使用这两条指令完成同步操作。

Linux Kernel中的atomic_add函数

如下是Linux Kernel中使用的atomic_add函数的定义,它实现原子的给v指向的atomic_t增加i的功能。

atomic_add

static inline void atomic_add(int i, atomic_t *v)
{
        unsigned long tmp;
        int result;

        __asm__ __volatile__("@ atomic_add\n"
"1:     ldrex   %0, [%3]\n"
"       add     %0, %0, %4\n"
"       strex   %1, %0, [%3]\n"
"       teq     %1, #0\n"
"       bne     1b"
        : "=&r" (result), "=&r" (tmp), "+Qo" (v->counter)
        : "r" (&v->counter), "Ir" (i)
        : "cc");
}

在第7行,使用LDREX指令将v->counter所指向的内存地址的值装入寄存器中,并初始化exclusive monitor。 在第8行,将该寄存器中的值与i相加。 在第9,10,11行,使用STREX指令尝试将修改后的值存入原来的地址,如果STREX写入%1寄存器的值为0,则认为原子更新成功,函数返回;如果%1寄存器的值不为0,则认为exclusive monitor拒绝了本次对内存地址的访问,则跳转回第7行重新进行以上所述的过程,直到成功将修改后的值写入内存为止。该过程可能多次反复进行,但可以保证,在最后一次的读-修改-写回的过程中,没有其他代码访问该内存地址。

GCC内置的原子操作函数

看了上面的GCC内联汇编,是不是有点晕?在用户态下,GCC为我们提供了一系列内置函数,这些函数可以让我们既享受原子操作的好处,又免于编写复杂的内联汇编指令。这一系列的函数均以__sync开头,分为如下几类:

type __sync_fetch_and_sub (type *ptr, type value, ...)
type __sync_fetch_and_or (type *ptr, type value, ...)
type __sync_fetch_and_and (type *ptr, type value, ...)
type __sync_fetch_and_xor (type *ptr, type value, ...)
type __sync_fetch_and_nand (type *ptr, type value, ...)

 

这一系列函数完成对ptr所指向的内存地址的对应操作,并返回操作之前的值。

type __sync_add_and_fetch (type *ptr, type value, ...)
type __sync_sub_and_fetch (type *ptr, type value, ...)
type __sync_or_and_fetch (type *ptr, type value, ...)
type __sync_and_and_fetch (type *ptr, type value, ...)
type __sync_xor_and_fetch (type *ptr, type value, ...)
type __sync_nand_and_fetch (type *ptr, type value, ...)

 

这一系列函数完成对ptr所指向的内存地址的对应操作,并返回操作之后的值。

bool __sync_bool_compare_and_swap (type *ptr, type oldval, type newval, ...)
type __sync_val_compare_and_swap (type *ptr, type oldval, type newval, ...)

 

这两个函数完成对变量的原子比较和交换。即如果ptr所指向的内存地址存放的值与oldval相同的话,则将其用newval的值替换。 返回bool类型的函数返回比较的结果,相同为true,不同为false;返回type的函数返回的是ptr指向地址交换前存放的值。

 

参考资料:

https://developer.arm.com/documentation/dht0008/a/arm-synchronization-primitives/exclusive-accesses/exclusive-monitors

标签:__,...,架构,sync,ptr,同步操作,内存地址,type,ARM
来源: https://blog.csdn.net/u013178472/article/details/115481898

本站声明: 1. iCode9 技术分享网(下文简称本站)提供的所有内容,仅供技术学习、探讨和分享;
2. 关于本站的所有留言、评论、转载及引用,纯属内容发起人的个人观点,与本站观点和立场无关;
3. 关于本站的所有言论和文字,纯属内容发起人的个人观点,与本站观点和立场无关;
4. 本站文章均是网友提供,不完全保证技术分享内容的完整性、准确性、时效性、风险性和版权归属;如您发现该文章侵犯了您的权益,可联系我们第一时间进行删除;
5. 本站为非盈利性的个人网站,所有内容不会用来进行牟利,也不会利用任何形式的广告来间接获益,纯粹是为了广大技术爱好者提供技术内容和技术思想的分享性交流网站。

专注分享技术,共同学习,共同进步。侵权联系[81616952@qq.com]

Copyright (C)ICode9.com, All Rights Reserved.

ICode9版权所有