ICode9

精准搜索请尝试: 精确搜索
首页 > 其他分享> 文章详细

论文笔记——Deep State Space Models for Time Series Forecasting

2021-03-30 19:58:17  阅读:517  来源: 互联网

标签:学习 Forecasting space Models Space SSM state 时间 序列


链接

NeurIPS2018,亚马逊做的研究。
https://papers.nips.cc/paper/8004-deep-state-space-models-for-time-series-forecasting

主要工作

将state space models(SSM)与深度学习结合起来。
将基于独立的时间序列的线性的state space model用联合起来学习的RNN进行参数化。并且,保持了state space models的性能和可解释型,又使得能够从原始数据中学习到复杂的状态。

  • 主要是用RNN融合SSM,用RNN将SSM参数化的过程中,参数是由原始的时间序列和相关的协变量提取出来的。
  • 使得模型具有可解释型,针对每个单独的时间序列的SSM的参数是可以检验的。结合SSM的结构假设,模型可以在标准化后适应小数据和大数据。在数据量少时还可以避免过拟合。

SSM

state space model是对时间序列建模和学习的重要框架,包含了众所周知的ARIMA和指数平滑。
SSM很适合用于那些结构还不太清晰的时间序列。由于对这些结构还不太清晰的时间序列可以提出一些假设(比如ARIMA要求时间序列本身或者差分后是平稳的),所以模型具有数据敏感性和很好的可解释型。但是,这样需要整个时间序列有足够的历史数据。除此之外,SSM也不能发现类似的一些时间序列中蕴含的共同的信息(这在亚马逊的deepAR的paper中也有提到),因为参数都是独立学习的。

DNN

优势:

  • 可以解析高维的特征
  • 可以在单独的时间序列中或者几个时间序列的整体层次上识别时间序列的模式

劣势:

  • 需要大量数据
  • 缺乏可解释型,黑盒模型。

Deep State Space Models

  1. state space参数是全局学习的,而非像SSM一样独立学习。
  2. 通过与每个时间序列都相关的协方差学习过全局共享的映射关系
  3. 通过RNN学习SSM的参数

标签:学习,Forecasting,space,Models,Space,SSM,state,时间,序列
来源: https://blog.csdn.net/sherpahu/article/details/100673939

本站声明: 1. iCode9 技术分享网(下文简称本站)提供的所有内容,仅供技术学习、探讨和分享;
2. 关于本站的所有留言、评论、转载及引用,纯属内容发起人的个人观点,与本站观点和立场无关;
3. 关于本站的所有言论和文字,纯属内容发起人的个人观点,与本站观点和立场无关;
4. 本站文章均是网友提供,不完全保证技术分享内容的完整性、准确性、时效性、风险性和版权归属;如您发现该文章侵犯了您的权益,可联系我们第一时间进行删除;
5. 本站为非盈利性的个人网站,所有内容不会用来进行牟利,也不会利用任何形式的广告来间接获益,纯粹是为了广大技术爱好者提供技术内容和技术思想的分享性交流网站。

专注分享技术,共同学习,共同进步。侵权联系[81616952@qq.com]

Copyright (C)ICode9.com, All Rights Reserved.

ICode9版权所有