ICode9

精准搜索请尝试: 精确搜索
首页 > 其他分享> 文章详细

伯努利数(详解 + 例题 :P3711 仓鼠的数学题)

2021-03-05 21:30:53  阅读:201  来源: 互联网

标签:仓鼠 frac int lim sum 1ll P3711 例题 mod


伯努利数

定义 S k ( n ) = ∑ i = 0 n − 1 i k S_k(n) = \sum\limits_{i = 0} ^{n - 1} i ^ k Sk​(n)=i=0∑n−1​ik。

从二项式出发

( 0 + 1 ) k + 1 = ∑ i = 0 k C k + 1 i 0 i + 0 k + 1 ⋮ ( n − 1 + 1 ) k + 1 = ∑ i = 0 k C k + 1 i ( n − 1 ) i + ( n − 1 ) k + 1 把 次 方 k + 1 的 移 项 , 再 整 体 相 加 , 得 n k + 1 = ∑ i = 0 k C k + 1 i S i ( n ) n k + 1 = ∑ i = 0 k − 1 C k + 1 i S i ( n ) + ( k + 1 ) S k ( n ) S k ( n ) = 1 k + 1 ( n k + 1 − ∑ i = 0 k − 1 C k + 1 i S i ( n ) ) (0 + 1) ^ {k + 1} = \sum_{i = 0} ^{k} C_{k + 1} ^{i} 0 ^ {i} + 0 ^{k + 1}\\ \vdots\\ (n - 1 + 1) ^{k + 1} = \sum_{i = 0} ^{k} C_{k + 1} ^{i} (n - 1) ^{i} + (n - 1) ^{k + 1}\\ 把次方k + 1的移项,再整体相加,得\\ n ^{k + 1} = \sum_{i = 0} ^{k} C_{k + 1} ^{i} S_i(n)\\ n ^{k + 1} = \sum_{i = 0} ^{k - 1} C_{k + 1} ^{i} S_i(n) + (k + 1) S_k(n)\\ S_k(n) = \frac{1}{k + 1}\left(n ^{k + 1} - \sum_{i = 0} ^{k - 1} C_{k + 1} ^{i} S_i(n) \right)\\ (0+1)k+1=i=0∑k​Ck+1i​0i+0k+1⋮(n−1+1)k+1=i=0∑k​Ck+1i​(n−1)i+(n−1)k+1把次方k+1的移项,再整体相加,得nk+1=i=0∑k​Ck+1i​Si​(n)nk+1=i=0∑k−1​Ck+1i​Si​(n)+(k+1)Sk​(n)Sk​(n)=k+11​(nk+1−i=0∑k−1​Ck+1i​Si​(n))
于是我们有了一个 O ( n 2 ) O(n ^ 2) O(n2)递推求 S i ( n ) S_i(n) Si​(n)得算法,

对二项式再进一步考虑:

( 0 + m ) k = ∑ i = 0 k C k i 0 i m k − i ⋮ ( n − 1 + m ) k = ∑ i = 0 k C k i ( n − 1 ) i m k − i 左 右 两 边 同 时 相 加 S k ( n + m ) − S k ( m ) = ∑ i = 0 k C k i S i ( n ) m k − i 左 右 两 边 对 n 求 导 S k ′ ( n + m ) = ∑ i = 0 k C k i S i ′ ( n ) m k − i n = 0 , 代 入 S k ′ ( m ) = ∑ i = 0 k C k i S i ′ ( 0 ) m k − i 两 边 对 m 从 0 − > n 求 积 分 S k ( n ) − S k ( 0 ) = ∑ i = 0 k C k i S i ′ ( 0 ) n k − i + 1 k − i + 1 − ∑ i = 0 k C k i S i ′ ( 0 ) 0 k − i + 1 k − i + 1 S k ( 0 ) = 0 , 对 于 最 右 侧 i ≠ k + 1 , 所 以 0 k − i + 1 = 0 S k ( n ) = ∑ i = 0 k C k i S i ′ ( 0 ) n k − i + 1 k − i + 1 = 1 k + 1 ∑ i = 0 k C k + 1 i S i ′ ( 0 ) n k + i − 1 (0 + m) ^{k} = \sum_{i = 0} ^{k} C_{k} ^{i} 0 ^{i} m ^{k - i}\\ \vdots\\ (n - 1 + m) ^{k} = \sum_{i = 0} ^{k} C_{k} ^{i}(n - 1) ^{i} m ^{k - i}\\ 左右两边同时相加\\ S_k(n + m) - S_k(m) = \sum_{i = 0} ^{k} C_{k} ^{i} S_{i} (n) m ^{k - i}\\ 左右两边对n求导\\ S'_k(n + m) = \sum_{i = 0} ^{k} C_{k} ^{i} S'_i(n) m^{k - i}\\ \\ n = 0,代入\\ S'_k(m) = \sum_{i = 0} ^{k} C_{k} ^{i} S'_i(0) m^{k - i}\\ 两边对m从0->n求积分\\ S_k(n) - S_k(0) = \sum_{i = 0} ^{k} C_{k} ^{i} S'_i(0) \frac{n ^{k - i + 1}}{k - i + 1} - \sum_{i = 0} ^{k} C_{k} ^{i} S'_i(0) \frac{0 ^{k - i + 1}}{k - i + 1}\\ S_k(0) = 0, 对于最右侧i \neq k + 1,所以0 ^{k - i + 1} = 0 \\ S_k(n) = \sum_{i = 0} ^{k} C_{k} ^{i} S'_i(0) \frac{n ^{k - i + 1}}{k - i + 1} = \frac{1}{k + 1} \sum_{i = 0} ^{k} C_{k + 1} ^{i} S'_i(0) n ^{k + i - 1}\\ (0+m)k=i=0∑k​Cki​0imk−i⋮(n−1+m)k=i=0∑k​Cki​(n−1)imk−i左右两边同时相加Sk​(n+m)−Sk​(m)=i=0∑k​Cki​Si​(n)mk−i左右两边对n求导Sk′​(n+m)=i=0∑k​Cki​Si′​(n)mk−in=0,代入Sk′​(m)=i=0∑k​Cki​Si′​(0)mk−i两边对m从0−>n求积分Sk​(n)−Sk​(0)=i=0∑k​Cki​Si′​(0)k−i+1nk−i+1​−i=0∑k​Cki​Si′​(0)k−i+10k−i+1​Sk​(0)=0,对于最右侧i​=k+1,所以0k−i+1=0Sk​(n)=i=0∑k​Cki​Si′​(0)k−i+1nk−i+1​=k+11​i=0∑k​Ck+1i​Si′​(0)nk+i−1
其实,这里的 S i ( 0 ) S_i(0) Si​(0)就是伯努利数,为了方便书写, B i = S i ′ ( 0 ) B_i = S'_i(0) Bi​=Si′​(0)。
我 们 先 将 n = 1 代 入 上 式 S k ( 1 ) = 1 k + 1 ∑ i = 0 k C k + 1 i B i 同 样 的 我 们 把 右 边 的 最 高 项 给 提 出 来 S k ( 1 ) = 1 k + 1 ∑ i = 0 k − 1 C k + 1 i B i + B k 则 有 B k − S k ( 1 ) = − 1 k + 1 ∑ i = 0 k − 1 C k + 1 i B i 特 殊 地 , 考 虑 k = 0 , 有 S 0 ( 1 ) = 1 , 所 以 B 0 = 1 k ≥ 1 , S k ( 1 ) = 0 , 所 以 B k = − 1 k + 1 ∑ i = 0 k − 1 C k + 1 i B i 我们先将n = 1代入上式\\ S_k(1) = \frac{1}{k + 1} \sum_{i = 0} ^{k} C_{k + 1} ^{i} B_i\\ 同样的我们把右边的最高项给提出来\\ S_k(1) = \frac{1}{k + 1} \sum_{i = 0} ^{k - 1} C_{k + 1} ^{i} B_i + B_k\\ 则有B_k - S_k(1) = - \frac{1}{k + 1} \sum_{i = 0} ^{k - 1} C_{k + 1} ^{i} B_i\\ 特殊地,考虑k = 0,有S_0(1) = 1, 所以B_0 = 1\\ k \geq 1, S_k(1) = 0, 所以B_k = - \frac{1}{k + 1} \sum_{i = 0} ^{k - 1} C_{k + 1} ^{i} B_i\\ 我们先将n=1代入上式Sk​(1)=k+11​i=0∑k​Ck+1i​Bi​同样的我们把右边的最高项给提出来Sk​(1)=k+11​i=0∑k−1​Ck+1i​Bi​+Bk​则有Bk​−Sk​(1)=−k+11​i=0∑k−1​Ck+1i​Bi​特殊地,考虑k=0,有S0​(1)=1,所以B0​=1k≥1,Sk​(1)=0,所以Bk​=−k+11​i=0∑k−1​Ck+1i​Bi​
由此我们可以 O ( k 2 ) O(k ^ 2) O(k2)递推出伯努利数出来了。

F a u l h a b e r Faulhaber Faulhaber公式

S k ( x ) = 1 k + 1 ∑ i = 0 k C k + 1 i B i x k − i + 1 S_k(x) = \frac{1}{k + 1} \sum\limits_{i = 0} ^{k}C_{k + 1} ^{i}B_i x ^{k - i + 1} Sk​(x)=k+11​i=0∑k​Ck+1i​Bi​xk−i+1

一个自然数幂次求和的公式,其实就是我们推导过程中的一步。

#include <bits/stdc++.h>

using namespace std;

const int N = 3e3 +10, mod = 1e9 + 7;

int C[N][N], B[N], inv[N];

void init() {
  for (int i = 0; i < N; i++) {
    C[i][0] = C[i][i] = 1;
    for (int j = 1; j < i; j++) {
      C[i][j] = (C[i - 1][j] + C[i - 1][j - 1]) % mod;
    }
  }
  inv[1] = 1;
  for (int i = 2; i < N; i++) {
    inv[i] = 1ll * (mod - mod / i) * inv[mod % i] % mod;
  }
  B[0] = 1;
  for (int i = 1; i < N - 1; i++) {
    int cur = 0;
    for (int j = 0; j < i; j++) {
      cur = (cur + 1ll * C[i + 1][j] * B[j] % mod) % mod;
    }
    cur = 1ll * cur * inv[i + 1] % mod;
    B[i] = (mod - cur) % mod;
  }
}

int main() {
  // freopen("in.txt", "r", stdin);
  // freopen("out.txt", "w", stdout);
  // ios::sync_with_stdio(false), cin.tie(0), cout.tie(0);
  init();
  int T, k;
  scanf("%d", &T);
  while (T--) {
    long long n, ans = 0, cur = 1;
    scanf("%lld %d", &n, &k);
    n++;
    n %= mod;
    for (int i = k; i >= 0; i--) {
      cur = cur * n % mod;
      ans = (ans + 1ll * C[k + 1][i] * B[i] % mod * cur % mod) % mod;
    }
    printf("%lld\n", ans * inv[k + 1] % mod);
  }
  return 0;
}

考虑生成函数

∑ i = 0 n C n + 1 i B i = [ n = 0 ] 对 两 边 加 上 B n + 1 ∑ i = 0 n + 1 C n + 1 i B i = [ n = 0 ] + B n + 1 ∑ i = 0 n C n i B i = [ n = 1 ] + B n ∑ i = 0 n 1 i ! ( n − i ) ! B i = [ n = 1 ] + B n n ! 设 指 数 型 生 成 函 数 B ( x ) = ∑ n ≥ 0 B n x n 有 B ( x ) e x = x + B ( x ) 从 而 有 B ( x ) = x e x − 1 B ( x ) = x ∑ n ≥ 0 1 n ! x n − 1 x ∑ n ≥ 1 1 n ! x n 1 ∑ n ≥ 0 1 ( n + 1 ) ! x n \sum_{i = 0} ^{n} C_{n + 1} ^{i} B_i = [n = 0]\\ 对两边加上B_{n + 1}\\ \sum_{i = 0} ^{n + 1} C_{n + 1} ^{i} B_i = [n = 0] + B_{n + 1}\\ \sum_{i = 0} ^{n} C_{n} ^{i} B_i = [n = 1] + B_{n}\\ \sum_{i = 0} ^{n} \frac{1}{i!(n - i)!} B_{i} = [n = 1] + \frac{B_{n}}{n!}\\ 设指数型生成函数B(x) = \sum_{n \geq 0} B_n x ^ n\\ 有B(x) e ^x = x + B(x)\\ 从而有B(x) = \frac{x}{e ^ x - 1}\\ B(x) = \frac{x}{\sum\limits_{n \geq 0} \frac{1}{n!} x ^ n - 1}\\ \frac{x}{\sum\limits_{n \geq 1} \frac{1}{n!} x ^ n}\\ \frac{1}{\sum\limits_{n \geq 0} \frac{1}{(n + 1)!}x ^ n}\\ i=0∑n​Cn+1i​Bi​=[n=0]对两边加上Bn+1​i=0∑n+1​Cn+1i​Bi​=[n=0]+Bn+1​i=0∑n​Cni​Bi​=[n=1]+Bn​i=0∑n​i!(n−i)!1​Bi​=[n=1]+n!Bn​​设指数型生成函数B(x)=n≥0∑​Bn​xn有B(x)ex=x+B(x)从而有B(x)=ex−1x​B(x)=n≥0∑​n!1​xn−1x​n≥1∑​n!1​xnx​n≥0∑​(n+1)!1​xn1​
只需多项式求逆即可解决。

#include <bits/stdc++.h>

using namespace std;

const int N = 1e6 + 10, mod = 998244353;

int r[N], b[N], t[N];

int quick_pow(int a, int n) {
  int ans = 1;
  while (n) {
    if (n & 1) {
      ans = 1ll * a * ans % mod;
    }
    a = 1ll * a * a % mod;
    n >>= 1;
  }
  return ans;
}

void get_r(int lim) {
  for (int i = 0; i < lim; i++) {
    r[i] = (i & 1) * (lim >> 1) + (r[i >> 1] >> 1);
  }
}

void NTT(int *f, int lim, int rev) {
  for (int i = 0; i < lim; i++) {
    if (i < r[i]) {
      swap(f[i], f[r[i]]);
    }
  }
  for (int mid = 1; mid < lim; mid <<= 1) {
    int wn = quick_pow(3, (mod - 1) / (mid << 1));
    for (int len = mid << 1, cur = 0; cur < lim; cur += len) {
      int w = 1;
      for (int k = 0; k < mid; k++, w = 1ll * w * wn % mod) {
        int x = f[cur + k], y = 1ll * w * f[cur + mid + k] % mod;
        f[cur + k] = (x + y) % mod, f[cur + mid + k] = (x - y + mod) % mod;
      }
    }
  }
  if (rev == -1) {
    int inv = quick_pow(lim, mod - 2);
    reverse(f + 1, f + lim);
    for (int i = 0; i < lim; i++) {
      f[i] = 1ll * f[i] * inv % mod;
    }
  }
}

void polyinv(int *f, int *g, int n) {
  if (n == 1) {
    g[0] = quick_pow(f[0], mod - 2);
    return ;
  }
  polyinv(f, g, n + 1 >> 1);
  for (int i = 0; i < n; i++) {
    t[i] = f[i];
  }
  int lim = 1;
  while (lim < 2 * n) {
    lim <<= 1;
  }
  get_r(lim);
  NTT(t, lim, 1);
  NTT(g, lim, 1);
  for (int i = 0; i < lim; i++) {
    int cur = (2 - 1ll * g[i] * t[i] % mod + mod) % mod;
    g[i] = 1ll * g[i] * cur % mod;
    t[i] = 0;
  }
  NTT(g, lim, -1);
  for (int i = n; i < lim; i++) {
    g[i] = 0;
  }
}

int fac[N], ifac[N], B[N], n;

void init() {
  fac[0] = 1;
  for (int i = 1; i < N; i++) {
    fac[i] = 1ll * fac[i - 1] * i % mod;
  }
  ifac[N - 1] = quick_pow(fac[N - 1], mod - 2);
  for (int i = N - 2; i >= 0; i--) {
    ifac[i] = 1ll * ifac[i + 1] * (i + 1) % mod;
  }
}

int main() {
  // freopen("in.txt", "r", stdin);
  // freopen("out.txt", "w", stdout);
  // ios::sync_with_stdio(false), cin.tie(0), cout.tie(0);
  init();
  n = 100000;
  for (int i = 0; i <= n + 1; i++) {
    B[i] = ifac[i + 1];
  }
  polyinv(B, b, n + 2);
  for (int i = 0; i <= n + 1; i++) {
    B[i] = 1ll * b[i] * fac[i] % mod;
  }
  for (int i = 0; i <= n + 1; i++) {
    printf("%d%c", B[i], i == n + 1 ? '\n' : ' ');
  }
  return 0;
}

P3711 仓鼠的数学题

F ( x ) = ∑ k = 0 n S k ( x ) a k 原 本 定 义 的 S k ( x ) = ∑ i = 0 x i k 根 据 伯 努 利 数 的 定 义 S k ′ ( x ) = ∑ i = 0 x − 1 i k 则 我 们 求 F ( x ) = ∑ k = 0 n S k ′ ( x ) a k , 答 案 即 为 F ( x + 1 ) 考 虑 先 求 F ( x ) = ∑ k = 0 n a k 1 k + 1 ∑ i = 0 k C k + 1 i B i x k − i + 1 ∑ k = 0 n a k k + 1 ∑ i = 0 k ( k + 1 ) ! i ! ( k + 1 − i ) ! B i x k − i + 1 ∑ k = 0 n a k k ! ∑ i = 0 k B i i ! x k − i + 1 ( k − i + 1 ) ! ∑ i = 1 n + 1 x i i ! ∑ k = i − 1 n ( a k k ! ) ( B k + 1 − i ( k + 1 − i ) ! ) 设 f ( n ) = a k k ! , g ( n ) = B n n ! , 另 g ( n ) = g ( n − i ) 即 翻 转 一 下 ∑ i = 1 n + 1 x i i ! ∑ k = i − 1 n f ( k ) g ( n + i − k ) 容 易 发 现 后 面 是 一 个 卷 积 , 所 以 可 以 优 化 F(x) = \sum_{k = 0} ^{n} S_k(x) a_k\\ 原本定义的S_k(x) = \sum_{i = 0} ^{x} i ^ k\\ 根据伯努利数的定义S'_k(x) = \sum_{i = 0} ^{x - 1} i ^ k\\ 则我们求F(x) = \sum_{k = 0} ^{n} S'_k(x) a_k, 答案即为F(x + 1)\\ 考虑先求F(x) = \sum_{k = 0} ^{n} a_k \frac{1}{k + 1} \sum\limits_{i = 0} ^{k}C_{k + 1} ^{i}B_i x ^{k - i + 1}\\ \sum_{k = 0} ^{n} \frac{a_k}{k + 1} \sum_{i = 0} ^{k} \frac{(k + 1)!}{i!(k + 1 - i)!} B_i x ^{k - i + 1}\\ \sum_{k = 0} ^{n} a_k k! \sum_{i = 0} ^{k} \frac{B_i}{i!}\frac{x ^{k - i + 1}}{(k - i + 1)!}\\ \sum_{i = 1} ^{n + 1} \frac{x ^{i}}{i!} \sum_{k = i - 1} ^{n} \left(a_k k!\right) \left( \frac{B_{k + 1 - i}}{(k + 1 - i)!} \right)\\ 设f(n) = a_k k!, g(n) = \frac{B_{n}}{n!}, 另g(n) = g(n - i)即翻转一下\\ \sum_{i = 1} ^{n + 1} \frac{x ^ i}{i!} \sum_{k = i - 1} ^{n} f(k) g(n + i - k)\\ 容易发现后面是一个卷积,所以可以优化\\ F(x)=k=0∑n​Sk​(x)ak​原本定义的Sk​(x)=i=0∑x​ik根据伯努利数的定义Sk′​(x)=i=0∑x−1​ik则我们求F(x)=k=0∑n​Sk′​(x)ak​,答案即为F(x+1)考虑先求F(x)=k=0∑n​ak​k+11​i=0∑k​Ck+1i​Bi​xk−i+1k=0∑n​k+1ak​​i=0∑k​i!(k+1−i)!(k+1)!​Bi​xk−i+1k=0∑n​ak​k!i=0∑k​i!Bi​​(k−i+1)!xk−i+1​i=1∑n+1​i!xi​k=i−1∑n​(ak​k!)((k+1−i)!Bk+1−i​​)设f(n)=ak​k!,g(n)=n!Bn​​,另g(n)=g(n−i)即翻转一下i=1∑n+1​i!xi​k=i−1∑n​f(k)g(n+i−k)容易发现后面是一个卷积,所以可以优化
下面的 n = n + 1 n = n + 1 n=n+1,由上易知 F ( x ) F(x) F(x)是一个 n + 1 n + 1 n+1次多项式。
设 F ( x ) = ∑ i = 0 n a i x i F ( x + 1 ) = ∑ i = 0 n a i ( x + 1 ) i ∑ i = 0 n a i ∑ j = 0 i C j i x j ∑ i = 0 n a i ∑ j = 0 i i ! j ! ( i − j ) ! x j ∑ i = 0 n x i i ! ∑ j = i n a j j ! 1 ( j − i ) ! 另 f ( n ) = a n n ! , g ( n ) = 1 n ! , 再 翻 转 g ( n ) ∑ i = 0 n x i i ! ∑ j = i n f ( j ) g ( n + i − j ) 后 面 也 同 样 是 一 个 卷 积 , 所 以 可 以 优 化 设F(x) = \sum_{i = 0} ^{n} a_i x ^ i\\ F(x + 1) = \sum_{i = 0} ^{n} a_i (x + 1) ^ i\\ \sum_{i = 0} ^{n} a_i \sum_{j = 0} ^{i} C_{j} ^{i} x ^ j\\ \sum_{i = 0} ^{n} a_i \sum_{j = 0} ^{i} \frac{i!}{j!(i - j)!} x ^ j\\ \sum_{i = 0} ^{n} \frac{x ^ i}{i!} \sum_{j = i} ^{n} a_j j! \frac{1}{(j - i)!}\\ 另f(n) = a_n n!, g(n) = \frac{1}{n!},再翻转g(n)\\ \sum_{i = 0} ^{n} \frac{x ^{i}}{i!} \sum_{j = i} ^{n} f(j) g(n + i - j)\\ 后面也同样是一个卷积,所以可以优化\\ 设F(x)=i=0∑n​ai​xiF(x+1)=i=0∑n​ai​(x+1)ii=0∑n​ai​j=0∑i​Cji​xji=0∑n​ai​j=0∑i​j!(i−j)!i!​xji=0∑n​i!xi​j=i∑n​aj​j!(j−i)!1​另f(n)=an​n!,g(n)=n!1​,再翻转g(n)i=0∑n​i!xi​j=i∑n​f(j)g(n+i−j)后面也同样是一个卷积,所以可以优化

#include <bits/stdc++.h>

using namespace std;

const int N = 1e6 + 10, mod = 998244353;

int r[N], t[N];

int quick_pow(int a, int n) {
  int ans = 1;
  while (n) {
    if (n & 1) {
      ans = 1ll * a * ans % mod;
    }
    a = 1ll * a * a % mod;
    n >>= 1;
  }
  return ans;
}

void get_r(int lim) {
  for (int i = 0; i < lim; i++) {
    r[i] = (i & 1) * (lim >> 1) + (r[i >> 1] >> 1);
  }
}

void NTT(int *f, int lim, int rev) {
  for (int i = 0; i < lim; i++) {
    if (i < r[i]) {
      swap(f[i], f[r[i]]);
    }
  }
  for (int mid = 1; mid < lim; mid <<= 1) {
    int wn = quick_pow(3, (mod - 1) / (mid << 1));
    for (int len = mid << 1, cur = 0; cur < lim; cur += len) {
      int w = 1;
      for (int k = 0; k < mid; k++, w = 1ll * w * wn % mod) {
        int x = f[cur + k], y = 1ll * w * f[cur + mid + k] % mod;
        f[cur + k] = (x + y) % mod, f[cur + mid + k] = (x - y + mod) % mod;
      }
    }
  }
  if (rev == -1) {
    int inv = quick_pow(lim, mod - 2);
    reverse(f + 1, f + lim);
    for (int i = 0; i < lim; i++) {
      f[i] = 1ll * f[i] * inv % mod;
    }
  }
}

void polyinv(int *f, int *g, int n) {
  if (n == 1) {
    g[0] = quick_pow(f[0], mod - 2);
    return ;
  }
  polyinv(f, g, n + 1 >> 1);
  for (int i = 0; i < n; i++) {
    t[i] = f[i];
  }
  int lim = 1;
  while (lim < 2 * n) {
    lim <<= 1;
  }
  get_r(lim);
  NTT(t, lim, 1);
  NTT(g, lim, 1);
  for (int i = 0; i < lim; i++) {
    int cur = (2 - 1ll * g[i] * t[i] % mod + mod) % mod;
    g[i] = 1ll * g[i] * cur % mod;
    t[i] = 0;
  }
  NTT(g, lim, -1);
  for (int i = n; i < lim; i++) {
    g[i] = 0;
  }
}

int fac[N], ifac[N], a[N], f[N], g[N], B[N], n;

void init() {
  fac[0] = 1;
  for (int i = 1; i < N; i++) {
    fac[i] = 1ll * fac[i - 1] * i % mod;
  }
  ifac[N - 1] = quick_pow(fac[N - 1], mod - 2);
  for (int i = N - 2; i >= 0; i--) {
    ifac[i] = 1ll * ifac[i + 1] * (i + 1) % mod;
  }
}

int main() {
  // freopen("in.txt", "r", stdin);
  // freopen("out.txt", "w", stdout);
  // ios::sync_with_stdio(false), cin.tie(0), cout.tie(0);
  init();
  scanf("%d", &n);
  for (int i = 0; i <= n; i++) {
    scanf("%d", &a[i]);
  }
  for (int i = 0; i <= n + 1; i++) {
    B[i] = ifac[i + 1];
  }
  polyinv(B, g, n + 2);
  for (int i = 0; i <= n; i++) {
    f[i] = 1ll * a[i] * fac[i] % mod;
  }
  reverse(g, g + n + 2);
  int lim = 1;
  while (lim < 2 * n + 10) {
    lim <<= 1;
  }
  get_r(lim);
  NTT(f, lim, 1), NTT(g, lim, 1);
  for (int i = 0; i < lim; i++) {
    f[i] = 1ll * f[i] * g[i] % mod;
  }
  NTT(f, lim, -1);
  for (int i = 1; i <= n + 1; i++) {
    a[i] = 1ll * ifac[i] * f[n + i] % mod;
  }
  a[0] = 0;
  n++;
  for (int i = 0; i < lim; i++) {
    f[i] = g[i] = 0;
  }
  for (int i = 0; i <= n; i++) {
    f[i] = 1ll * a[i] * fac[i] % mod;
    g[i] = ifac[n - i];
  }
  NTT(f, lim, 1), NTT(g, lim, 1);
  for (int i = 0; i < lim; i++) {
    f[i] = 1ll * f[i] * g[i] % mod;
  }
  NTT(f, lim, -1);
  for (int i = 0; i <= n; i++) {
    printf("%lld%c", 1ll * ifac[i] * f[n + i] % mod, i == n ? '\n' : ' ');
  }
  return 0;
}

标签:仓鼠,frac,int,lim,sum,1ll,P3711,例题,mod
来源: https://blog.csdn.net/weixin_45483201/article/details/114414524

本站声明: 1. iCode9 技术分享网(下文简称本站)提供的所有内容,仅供技术学习、探讨和分享;
2. 关于本站的所有留言、评论、转载及引用,纯属内容发起人的个人观点,与本站观点和立场无关;
3. 关于本站的所有言论和文字,纯属内容发起人的个人观点,与本站观点和立场无关;
4. 本站文章均是网友提供,不完全保证技术分享内容的完整性、准确性、时效性、风险性和版权归属;如您发现该文章侵犯了您的权益,可联系我们第一时间进行删除;
5. 本站为非盈利性的个人网站,所有内容不会用来进行牟利,也不会利用任何形式的广告来间接获益,纯粹是为了广大技术爱好者提供技术内容和技术思想的分享性交流网站。

专注分享技术,共同学习,共同进步。侵权联系[81616952@qq.com]

Copyright (C)ICode9.com, All Rights Reserved.

ICode9版权所有