ICode9

精准搜索请尝试: 精确搜索
首页 > 其他分享> 文章详细

AQS和CAS原理

2021-02-25 10:01:37  阅读:297  来源: 互联网

标签:AQS CAS 队列 state 线程 内存 原理


锁机制(AQS和CAS)

一、AQS

  1、AQS原理

    AQS:AbstractQuenedSynchronizer抽象的队列式同步器。是除了java自带的synchronized关键字之外的锁机制。
    AQS的全称为(AbstractQueuedSynchronizer),这个类在java.util.concurrent.locks包

  2、AQS的核心思想

    如果被请求的共享资源空闲,则将当前请求资源的线程设置为有效的工作线程,并将共享资源设置为锁定状态,如果被请求的共享资源被占用,那么就需要一套线程阻塞等待以及被唤醒时锁分配的机制,这个机制AQS是用CLH队列锁实现的,即将暂时获取不到锁的线程加入到队列中。
    CLH(Craig,Landin,and Hagersten)队列是一个虚拟的双向队列,虚拟的双向队列即不存在队列实例,仅存在节点之间的关联关系。
AQS是将每一条请求共享资源的线程封装成一个CLH锁队列的一个结点(Node),来实现锁的分配。

    AQS就是基于CLH队列,用volatile修饰共享变量state,线程通过CAS去改变状态符,成功则获取锁成功,失败则进入等待队列,等待被唤醒。

    注意:AQS是自旋锁:在等待唤醒的时候,经常会使用自旋(while(!cas()))的方式,不停地尝试获取锁,直到被其他线程获取成功

    实现了AQS的锁有:自旋锁、互斥锁、读锁写锁、条件产量、信号量、栅栏都是AQS的衍生物
AQS实现的具体方式如下:

  

  3、AQS底层使用了模板方法模式

  同步器的设计是基于模板方法模式的,如果需要自定义同步器一般的方式是这样(模板方法模式很经典的一个应用):

    使用者继承AbstractQueuedSynchronizer并重写指定的方法。(这些重写方法很简单,无非是对于共享资源state的获取和释放)

    将AQS组合在自定义同步组件的实现中,并调用其模板方法,而这些模板方法会调用使用者重写的方法。这和我们以往通过实现接口的方式有很大区别,这是模板方法模式很经典的一个运用。

    自定义同步器在实现的时候只需要实现共享资源state的获取和释放方式即可,至于具体线程等待队列的维护,AQS已经在顶层实现好了。自定义同步器实现的时候主要实现下面几种方法:  
      (1)isHeldExclusively():该线程是否正在独占资源。只有用到condition才需要去实现它。
      (2)tryAcquire(int):独占方式。尝试获取资源,成功则返回true,失败则返回false。
      (3)tryRelease(int):独占方式。尝试释放资源,成功则返回true,失败则返回false。
      (4)tryAcquireShared(int):共享方式。尝试获取资源。负数表示失败;0表示成功,但没有剩余可用资源;正数表示成功,且有剩余资源。
      (5)tryReleaseShared(int):共享方式。尝试释放资源,如果释放后允许唤醒后续等待结点返回true,否则返回false。

    ReentrantLock为例,(可重入独占式锁):state初始化为0,表示未锁定状态,A线程lock()时,会调用tryAcquire()独占锁并将state+1.之后其他线程再想tryAcquire的时候就会失败,直到A线程unlock()到state=0为止,其他线程才有机会获取该锁。A释放锁之前,自己也是可以重复获取此锁(state累加),这就是可重入的概念。

    注意:获取多少次锁就要释放多少次锁,保证state是能回到零态的。

    以CountDownLatch为例,任务分N个子线程去执行,state就初始化 为N,N个线程并行执行,每个线程执行完之后countDown()一次,state就会CAS减一。当N子线程全部执行完毕,state=0,会unpark()主调用线程,主调用线程就会从await()函数返回,继续之后的动作。

    一般来说,自定义同步器要么是独占方法,要么是共享方式,他们也只需实现tryAcquire-tryRelease、tryAcquireShared-tryReleaseShared中的一种即可。但AQS也支持自定义同步器同时实现独占和共享两种方式,如ReentrantReadWriteLock。

    在acquire() acquireShared()两种方式下,线程在等待队列中都是忽略中断的,acquireInterruptibly()/acquireSharedInterruptibly()是支持响应中断的。

二、CAS

  1、什么是CAS 

    CAS:Compare and Swap,即比较交换;

    jdk1.5增加了并发包java.util.concurrent.*,其下面的类使用CAS算法实现了区别于synchronized同步锁的一种乐观锁。jdk1.5之前java语言是靠synchronized关键字保证           同步的,这是一种独占锁,也是悲观锁;

  2、CAS算法理解

    2.1 与锁相比

      使用比较交换会使程序看起来更加复杂一些。但由于其非阻塞性,它对死锁问题天生免疫,并且,线程间的相互影响也远远比基于锁的方式要小;更为要                     的是,使用无锁的方式完全没有锁竞争带来的系统开销,也没有线程间频繁调度带来的开销;因此,它要比基于锁的方式拥有更优越的性能;

    2.2 无锁的好处:

      2.2.1 在高并发情况下,它比有锁的程序拥有更好的性能;

      2.2.2 它天生就是死锁免疫的;

    2.3 CAS算法的过程:

      它包含三个参数CAS(V,E,N):V表示更新的变量,E表示预期值,N表示新值;    

      2.3.1 线程访问时,先会将主内存中的数据同步到线程的工作内存当中
      2.3.2 假设线程A和线程B都有对数据进行更改,那么假如线程A先获取到执行权限
      2.3.3 线程A先会对比工作内存当中的数据和主内存当中的数据是否一致,如果一致(V==E)则进行更新,不一致则刷新数据,重新循环判断
      2.3.4 这时更新完毕后,线程B也要进行数据更新,主内存数据和工作内存数据做对比,如果一致则进行更新,不一致则将主内存数据重新更新到工作内存,然                        环再次对比两个内存中的数据直到一致为止

      

    2.4 CAS操作是抱着乐观的态度进行的

      它总是认为自己可以成功完成操作;当多个线程同时使用CAS操作一个变量时,只有一个会胜出,并成功更新,其余均会失 败;失败的线程不会被挂起,仅是被                    告知失败,并且允许再次尝试,当然也允许失败的线程放弃操作;基于这样的原理,CAS操作即使没有锁,也可以发现其他线程对当前线程的干扰,并进行恰当的处                    理;

    2.5 简单的说

      CAS需要你额外给出一个期望值,也就是你认为这个变量现在应该是什么样子的;如果变量不是你想象的那样,那说明它已经被别人修改过了;你就要重新读取,                  再次尝试修改就好了;

    2.6 在硬件层面

      大部分的现代处理器都已经支持原子性的CAS指令;在jdk1.5以后,虚拟机便可以使用这个指令来实现并发操作和并发数据结构,并且,这种操作在虚拟机中可以                  说是无处不在;

  3.CAS缺点

    CAS存在一个很明显的问题,即ABA问题;

    问题:如果变量V初次读取的时候是A,并且在准备赋值的时候检查到它任然是A,那能说明它的值没有被其他线程修改过了吗?

    如果在这段时间曾经被改成B,然后有改回A,那CAS操作就会误任务它从来没有被修改过。正对这种情况,java并发包提供了一个带有标记的原子应用类                                    AtomicStampedRefernce,它可以通过变量值的版本来保证CAS的正确性;

  4.原子类

    java中的原子类大致可以分为四个类:

      原子更新基本类型;

      原子更新数组类型;

      原子更新引用类型;

      原子更新属性类型;

    这些原子类中都是用了无锁的概念,有的地方直接使用CAS操作的线程安全的类型

import java.util.concurrent.atomic.AtomicInteger;

public class AtomicIntegerTest implements Runnable {

    private static Integer count=1;
    private static AtomicInteger atomicInteger=new AtomicInteger();

    @Override
    public void run() {
        while (true){
            int count=getCountAtomic();
            System.out.println(count);
            if (count>=150){
                break;
            }
        }
    }

    public synchronized Integer getCount(){
        try {
            Thread.sleep(50);
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
        return count++;
    }

    public Integer getCountAtomic(){
        try {
            Thread.sleep(50);
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
        return atomicInteger.incrementAndGet();
    }

    public static void main(String[] args){
        AtomicIntegerTest test = new AtomicIntegerTest();
        Thread thread1 = new Thread(test);
        Thread thread2 = new Thread(test);
        thread1.start();
        thread2.start();
    }
}

标签:AQS,CAS,队列,state,线程,内存,原理
来源: https://blog.csdn.net/qq_35222843/article/details/114062071

本站声明: 1. iCode9 技术分享网(下文简称本站)提供的所有内容,仅供技术学习、探讨和分享;
2. 关于本站的所有留言、评论、转载及引用,纯属内容发起人的个人观点,与本站观点和立场无关;
3. 关于本站的所有言论和文字,纯属内容发起人的个人观点,与本站观点和立场无关;
4. 本站文章均是网友提供,不完全保证技术分享内容的完整性、准确性、时效性、风险性和版权归属;如您发现该文章侵犯了您的权益,可联系我们第一时间进行删除;
5. 本站为非盈利性的个人网站,所有内容不会用来进行牟利,也不会利用任何形式的广告来间接获益,纯粹是为了广大技术爱好者提供技术内容和技术思想的分享性交流网站。

专注分享技术,共同学习,共同进步。侵权联系[81616952@qq.com]

Copyright (C)ICode9.com, All Rights Reserved.

ICode9版权所有