ICode9

精准搜索请尝试: 精确搜索
首页 > 其他分享> 文章详细

#3456. 城市规划(生成函数,多项式求逆)

2021-02-09 20:33:25  阅读:215  来源: 互联网

标签:求逆 3456 int 多项式 ++ 1ll lim quick mod


#3456. 城市规划

设 f n f_n fn​为 n n n个点的的点的简单无向连通图数目, g n g_n gn​为 n n n个点的简单无向图个数(不要求联通)。

对于 g n g_n gn​显然有 g n = 2 n ( n − 1 ) 2 g_n = 2 ^{\frac{n(n - 1)}{2}} gn​=22n(n−1)​,共有 n ( n + 1 ) 2 \frac{n(n + 1)}{2} 2n(n+1)​条边,然后每条边可选可不选。

我们枚举 1 1 1所在的点的连通块可得:
g n = ∑ i = 1 n C n − 1 i − 1 f i g n − i 2 ( 2 n ) = ∑ i = 1 n ( i − 1 n − 1 ) f i 2 ( 2 n − i ) 2 ( 2 n ) = ∑ i = 1 n ( n − 1 ) ! ( i − 1 ) ! ( n − i ) ! f i 2 ( 2 n − i ) 2 ( 2 n ) ( n − 1 ) ! = ∑ i = 1 n f i ( i − 1 ) ! 2 ( 2 n − i ) ( n − i ) ! 设 G ( x ) = ∑ n = 1 ∞ 2 ( 2 n ) ( n − 1 ) ! x n F ( x ) = ∑ n = 1 ∞ f n ( n − 1 ) ! H ( x ) = ∑ n = 0 ∞ 2 ( 2 n ) n ! G ( x ) = F ( x ) H ( x ) F ( x ) = G ( x ) H − 1 ( x ) 构 造 多 项 式 , 多 项 式 求 逆 , 把 [ x n ] 项 系 数 乘 上 ( n − 1 ) ! 即 是 答 案 g_n = \sum\limits_{i = 1} ^{n}C_{n - 1} ^{i - 1}f_ig_{n - i}\\ 2 ^{(_2 ^ n)} = \sum_{i = 1} ^{n}(_{i - 1} ^{n - 1})f_i 2 ^{(_2 ^{n - i})}\\ 2 ^{(_2 ^ n)} = \sum_{i = 1} ^{n} \frac{(n - 1)!}{(i - 1)!(n - i)!} f_i 2 ^{(_2 ^{n - i})}\\ \frac{2 ^{(_2 ^ n)}}{(n - 1)!} = \sum_{i = 1} ^{n} \frac{f_i}{(i - 1)!} \frac{2^{(_2 ^{n - i})}}{(n - i)!}\\ 设G(x) = \sum_{n = 1} ^{\infty} \frac{2 ^{(_2 ^n)}}{(n - 1)!} x ^ n\\ F(x) = \sum_{n = 1} ^{\infty} \frac{f_n}{(n - 1)!}\\ H(x) = \sum_{n = 0} ^{\infty} \frac{2 ^{(_2 ^n)}}{n!}\\ G(x) = F(x) H(x)\\ F(x) = G(x)H^{-1}(x)\\ 构造多项式,多项式求逆,把[x ^ n]项系数乘上(n - 1)!即是答案\\ gn​=i=1∑n​Cn−1i−1​fi​gn−i​2(2n​)=i=1∑n​(i−1n−1​)fi​2(2n−i​)2(2n​)=i=1∑n​(i−1)!(n−i)!(n−1)!​fi​2(2n−i​)(n−1)!2(2n​)​=i=1∑n​(i−1)!fi​​(n−i)!2(2n−i​)​设G(x)=n=1∑∞​(n−1)!2(2n​)​xnF(x)=n=1∑∞​(n−1)!fn​​H(x)=n=0∑∞​n!2(2n​)​G(x)=F(x)H(x)F(x)=G(x)H−1(x)构造多项式,多项式求逆,把[xn]项系数乘上(n−1)!即是答案

#include <bits/stdc++.h>

using namespace std;

const int mod = 1004535809, inv2 = mod + 1 >> 1;

namespace Quadratic_residue {
  struct Complex {
    int r, i;

    Complex(int _r = 0, int _i = 0) : r(_r), i(_i) {}
  };

  int I2;

  Complex operator * (const Complex &a, Complex &b) {
    return Complex((1ll * a.r * b.r % mod  + 1ll * a.i * b.i % mod * I2 % mod) % mod, (1ll * a.r * b.i % mod + 1ll * a.i * b.r % mod) % mod);
  }

  Complex quick_pow(Complex a, int n) {
    Complex ans = Complex(1, 0);
    while (n) {
      if (n & 1) {
        ans = ans * a;
      }
      a = a * a;
      n >>= 1;
    }
    return ans;
  }

  int get_residue(int n) {
    mt19937 e(233);
    if (n == 0) {
      return 0;
    }
    if(quick_pow(n, (mod - 1) >> 1).r == mod - 1) {
      return -1;
    }
    uniform_int_distribution<int> r(0, mod - 1);
    int a = r(e);
    while(quick_pow((1ll * a * a % mod - n + mod) % mod, (mod - 1) >> 1).r == 1) {
      a = r(e);
    }
    I2 = (1ll * a * a % mod - n + mod) % mod;
    int x = quick_pow(Complex(a, 1), (mod + 1) >> 1).r, y = mod - x;
    if(x > y) swap(x, y);
    return x;
  }
}

const int N = 1e6 + 10;

int r[N], inv[N], b[N], c[N], d[N], e[N], t[N];

int quick_pow(int a, int n) {
  int ans = 1;
  while (n) {
    if (n & 1) {
      ans = 1ll * a * ans % mod;
    }
    a = 1ll * a * a % mod;
    n >>= 1;
  }
  return ans;
}

void get_r(int lim) {
  for (int i = 0; i < lim; i++) {
    r[i] = (i & 1) * (lim >> 1) + (r[i >> 1] >> 1);
  }
}

void get_inv(int n) {
  inv[1] = 1;
  for (int i = 2; i <= n; i++) {
    inv[i] = 1ll * (mod - mod / i) * inv[mod % i] % mod;
  }
}

void NTT(int *f, int lim, int rev) {
  for (int i = 0; i < lim; i++) {
    if (i < r[i]) {
      swap(f[i], f[r[i]]);
    }
  }
  for (int mid = 1; mid < lim; mid <<= 1) {
    int wn = quick_pow(3, (mod - 1) / (mid << 1));
    for (int len = mid << 1, cur = 0; cur < lim; cur += len) {
      int w = 1;
      for (int k = 0; k < mid; k++, w = 1ll * w * wn % mod) {
        int x = f[cur + k], y = 1ll * w * f[cur + mid + k] % mod;
        f[cur + k] = (x + y) % mod, f[cur + mid + k] = (x - y + mod) % mod;
      }
    }
  }
  if (rev == -1) {
    int inv = quick_pow(lim, mod - 2);
    reverse(f + 1, f + lim);
    for (int i = 0; i < lim; i++) {
      f[i] = 1ll * f[i] * inv % mod;
    }
  }
}

void polyinv(int *f, int *g, int n) {
  if (n == 1) {
    g[0] = quick_pow(f[0], mod - 2);
    return ;
  }
  polyinv(f, g, n + 1 >> 1);
  for (int i = 0; i < n; i++) {
    t[i] = f[i];
  }
  int lim = 1;
  while (lim < 2 * n) {
    lim <<= 1;
  }
  get_r(lim);
  NTT(t, lim, 1);
  NTT(g, lim, 1);
  for (int i = 0; i < lim; i++) {
    int cur = (2 - 1ll * g[i] * t[i] % mod + mod) % mod;
    g[i] = 1ll * g[i] * cur % mod;
    t[i] = 0;
  }
  NTT(g, lim, -1);
  for (int i = n; i < lim; i++) {
    g[i] = 0;
  }
}

void polysqrt(int *f, int *g, int n) {
  if (n == 1) {
    g[0] = Quadratic_residue::get_residue(f[0]);
    return ;
  }
  polysqrt(f, g, n + 1 >> 1);
  polyinv(g, b, n);
  int lim = 1;
  while (lim < 2 * n) {
    lim <<= 1;
  }
  get_r(lim);
  for (int i = 0; i < n; i++) {
    t[i] = f[i];
  }
  NTT(g, lim, 1);
  NTT(b, lim, 1);
  NTT(t, lim, 1);
  for (int i = 0; i < lim; i++) {
    g[i] = (1ll * inv2 * g[i] % mod + 1ll * inv2 * b[i] % mod * t[i] % mod) % mod;
    b[i] = t[i] = 0;
  }
  NTT(g, lim, -1);
  for (int i = n; i < lim; i++) {
    g[i] = 0;
  }
}

void derivative(int *a, int *b, int n) {
  for (int i = 0; i < n; i++) {
    b[i] = 1ll * a[i + 1] * (i + 1) % mod;
  }
}

void integrate(int *a, int n) {
  for (int i = n - 1; i >= 1; i--) {
    a[i] = 1ll * a[i - 1] * inv[i] % mod;
  }
  a[0] = 0;
}

void polyln(int *f, int *g, int n) {
  polyinv(f, b, n);
  derivative(f, g, n);
  int lim = 1;
  while (lim < 2 * n) {
    lim <<= 1;
  }
  get_r(lim);
  NTT(g, lim, 1);
  NTT(b, lim, 1);
  for (int i = 0; i < lim; i++) {
    g[i] = 1ll * g[i] * b[i] % mod;
    b[i] = 0;
  }
  NTT(g, lim, -1);
  for (int i = n; i < lim; i++) {
    g[i] = 0;
  }
  integrate(g, n);
}

void polyexp(int *f, int *g, int n) {
  if (n == 1) {
    g[0] = 1;
    return ;
  }
  polyexp(f, g, n + 1 >> 1);
  int lim = 1;
  while (lim < 2 * n) {
    lim <<= 1;
  }
  polyln(g, d, n);
  for (int i = 0; i < n; i++) {
    t[i] = (f[i] - d[i] + mod) % mod;
  }
  t[0] = (t[0] + 1) % mod;
  get_r(lim);
  NTT(g, lim, 1);
  NTT(t, lim, 1);
  for (int i = 0; i < lim; i++) {
    g[i] = 1ll * g[i] * t[i] % mod;
    t[i] = d[i] =  0;
  }
  NTT(g, lim, -1);
  for (int i = n; i < lim; i++) {
    g[i] = 0;
  }
}

/*
  b存放多项式逆,
  c存放多项式开根,
  d存放多项式对数ln,
  e存放多项式指数exp,
  t作为中间转移数组,
  如果要用到polyln,得提前调用get_inv(n)先预先得到我们想要得到的逆元范围。
*/

int h[N], g[N], fac[N], ifac[N], n;

void init() {
  fac[0] = 1;
  for (int i = 1; i < N; i++) {
    fac[i] = 1ll * i * fac[i - 1] % mod;
  }
  ifac[N - 1] = quick_pow(fac[N - 1], mod - 2);
  for (int i = N - 2; i >= 0; i--) {
    ifac[i] = 1ll * ifac[i + 1] * (i + 1) % mod;
  }
}

int main() {
  // freopen("in.txt", "r", stdin);
  // freopen("out.txt", "w", stdout);
  // ios::sync_with_stdio(false), cin.tie(0), cout.tie(0);
  scanf("%d", &n);
  init();
  for (int i = 1; i <= n; i++) {
    g[i] = 1ll * quick_pow(2, 1ll * i * (i - 1) / 2 % (mod - 1)) * ifac[i - 1] % mod;
  }
  for (int i = 0; i <= n; i++) {
    h[i] = 1ll * quick_pow(2, 1ll * i * (i - 1) / 2 % (mod - 1)) * ifac[i] % mod;
  }
  polyinv(h, b, n + 1);
  for (int i = 0; i <= n; i++) {
    h[i] = b[i];
    b[i] = 0;
  }
  int lim = 1;
  while (lim <= 2 * n) {
    lim <<= 1;
  }
  get_r(lim);
  NTT(g, lim, 1);
  NTT(h, lim, 1);
  for (int i = 0; i < lim; i++) {
    g[i] = 1ll * g[i] * h[i] % mod;
    h[i] = 0;
  }
  NTT(g, lim, -1);
  printf("%d\n", 1ll * g[n] * fac[n - 1] % mod);
  return 0;
}

标签:求逆,3456,int,多项式,++,1ll,lim,quick,mod
来源: https://blog.csdn.net/weixin_45483201/article/details/113775039

本站声明: 1. iCode9 技术分享网(下文简称本站)提供的所有内容,仅供技术学习、探讨和分享;
2. 关于本站的所有留言、评论、转载及引用,纯属内容发起人的个人观点,与本站观点和立场无关;
3. 关于本站的所有言论和文字,纯属内容发起人的个人观点,与本站观点和立场无关;
4. 本站文章均是网友提供,不完全保证技术分享内容的完整性、准确性、时效性、风险性和版权归属;如您发现该文章侵犯了您的权益,可联系我们第一时间进行删除;
5. 本站为非盈利性的个人网站,所有内容不会用来进行牟利,也不会利用任何形式的广告来间接获益,纯粹是为了广大技术爱好者提供技术内容和技术思想的分享性交流网站。

专注分享技术,共同学习,共同进步。侵权联系[81616952@qq.com]

Copyright (C)ICode9.com, All Rights Reserved.

ICode9版权所有