ICode9

精准搜索请尝试: 精确搜索
首页 > 其他分享> 文章详细

【离散数学】 MIT 6.042J 笔记 - Lecture 2 Introduction

2021-02-01 20:02:55  阅读:316  来源: 互联网

标签:usepackage begin end Introduction 6.042 离散数学 Rightarrow true proof


PDF 文件下载

【离散数学】MIT 6.042J - Fall 2010 - Note for Lecture 2

图片效果

1
2
3

LaTeX \LaTeX LATE​X 代码

\documentclass{article}

\usepackage{fancyhdr}
\usepackage{graphicx}
\usepackage{titlesec}
\usepackage{titletoc}
\usepackage{listings}
\usepackage{appendix}
\usepackage{bm}
\usepackage{amsmath}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsthm}
\usepackage{multirow}
\usepackage{hyperref}
\usepackage{subfig}
\usepackage{url}
\usepackage{cite}
\usepackage{array}
\usepackage[a4paper, left=2.5cm, right=2.5cm, top=2.65cm, bottom=2.54cm]{geometry}

\newtheorem{definition}{Definition}
\newtheorem{theorem}{Theorem}

\title{\huge \bfseries Mathematics for Computer Science, MIT 6.042J - Fall 2010 - Note for Lecture 2}

\author{\Large Teddy van Jerry}
\date{\today}

\pagestyle{fancy}
\fancyhf{}
\cfoot{\thepage}
\chead{MIT 6.042J Lecture 2 - Introduction}

\begin{document}

    \maketitle

    {\Large Lecture 2: Introduction}

    \section{Proof by Contradiction}

        \subsection{definition}

            \begin{definition}
                To prove $p$ is True, we assume $p$ is False,
                (i.e. $\lnot p$ is True)
                then use that thypothesis to derive a false hood or contraction.
            \end{definition}

        \subsection{Example 1}
            $$\sqrt{2} \text{ is irrational.}$$

            \begin{proof}
                Assume for the purpose of contradiction
                that $\sqrt{2}$ is rational.
                $$
                \begin{aligned}
                    \Rightarrow & \sqrt{2} = \frac{a}{b}, (a,b)=1 \\
                    \Rightarrow & 2 = \frac{a^2}{b^2} \\
                    \Rightarrow & 2b^2 = a^2 \\
                    \Rightarrow & 2 | a \\
                    \Rightarrow & 2 | b \\
                    \Rightarrow & 2 | (a,b) \\
                    \Rightarrow & (a,b) \neq 1 \\
                    \Rightarrow & \sqrt{2} \text{ is irrational.}
                \end{aligned}
                $$
                
                Irrational number was first discovered by ancient Greek people.
                But they did not like irrational numbers as
                irrational numbers can not be written finitely.
                (in ancient Greek, anything infinite was perceived as bad.)
                
                It caused a stir as it proved inconsistent axioms.
                They covered it up, and denied the result.
            \end{proof}

        \subsection{Example 2}

            $$90 > 92$$

            Proof: by PowerPoint

            \begin{proof}
                We will take two  triangles with total area 90,
                and divide them into four triangles with total area greater than 92.

                By the `conservation of area' axiom,
                this will imply that an area of 90 is larger than an area of 92.
                (Picture omitted)

                So $90 > 92$.
            \end{proof}

            It is false because the rectangle is not drawn correctly.

    \section{Induction axiom}

        \subsection{Definition}
            
            \begin{definition}
                Let $P(n)$ be a predicate.
                If $P(0)$ is not true and $\forall n \in \mathbb{N}$,
                $P(n) \Rightarrow P(n+1)$ is True,
                then $\forall n \in \mathbb{N}$, $P(n)$ is true.
            \end{definition}

            We can view this as a series of dominoes. Each domino knocks over the next.

        \subsection{Example 1}

            $$\forall n \geqslant 0 \text{, } 1+2+3+\cdots + n = \frac{n(n+1)}{2}$$
            or
            $$\forall n \geqslant 0 \text{, } \sum_{i = 1}^{n} = \frac{n(n+1)}{2} $$

            \begin{proof}
            
                Let $P(n)$ be proposition that $\sum_{i = 1}^{n} = \frac{n(n+1)}{2} $.

                Base Case:$$\sum_{i = 1}^{0} = 0 $$

                Inductive Step:
                (For $n \geqslant 0$, show $P(n) \Rightarrow P(n+1)$ is true.)

                Assume $P(n)$ is true for purposes of induction.
                (i.e. assume $1+2+3+\cdots + n = \frac{n(n+1)}{2}$)

                $$1+2+\cdots + n + (n+1) = \frac{n(n+1)}{2} + (n+1) = \frac{(n+1)(n+2)}{2}$$

            \end{proof}

        \subsection{Example 2}

            $$\forall n \in \mathbb{N}, 3\left|(n^3-n)\right.$$

            \begin{proof}
                Let $P(n)$ be $3\left|(n^3-n)\right.$.

                Base Case: $3|(0-0)$.

                Inductive Step: For $n \geqslant 0$, show  $P(n) \Rightarrow P(n+1)$ is true.

                Examine
                $$
                \begin{aligned}
                    (n+1)^3-(n+1) & = n^3+3n^2+3n+1-(n+1) \\
                    & = n^3+3n^2+2n \\
                    & = (n^3-n) + 3(n^2+n) \\
                \end{aligned}
                $$
                
                $$\Rightarrow 3\left|(n+1)^3-(n+1)\right.$$

            \end{proof}

        \subsection{Example 3}

            The induction does not necessarily begin with 0.
            We have:

            Base Case: $P(n)$ is true.

            Inductive Step: $\forall n \geqslant b \text{, } P(n) \Rightarrow P(n+1)$
            
            Conclusion: $\forall n \geqslant b \text{, } P(n)$ is true.

            \subsubsection{A false proof}

                All horses are the same color.

                \begin{proof}
                    Let $P(n)$ be: In any set of $n$ horses,
                    the horses are all the same color.

                    Base Case: One horse is the same color itself.

                    Inductive Step:
                    Assume $P(n)$ is true to prove $P(n+1)$ is true.

                    Consider a set of $n+1$ horses $H_1, H_2, \cdots, H_{n+1}$.

                    Then $H_1, H_2, \cdots, H_{n}$ are the same color.

                    And $H_2, H_3, \cdots, H_{n+1}$ are the same color.

                    Then they share the same color.
                \end{proof}

                The flaw here: $P(1) \Rightarrow P(2)$ is false as from 1 to $n$
                shares no horse with from 2 to $n+1$.
                (Or we can say it is false with the dots. The missing link with $n=1$.)

                Professor: If you don't check the base case,
                you can proof really great stuff.

        \subsection{Example 4}
            $\forall n, \exists$ way to fill a $2^n \times 2^n$ region with
            the L-Shape tiles with a center square missing.

            Way 1:

            \begin{proof}
                Assume $P(n)$ to be $\forall n, \exists$ way to fill a $2^n \times 2^n$ region with
                the L-Shape tiles with a \emph{corner} square missing.

                Base Case has been checked.

                For $n \geqslant 0$, assume $P(n)$ to verify I.H.
                so we need to show $P(n+1)$ is true.

                Then in the case with $n+1$,
                we place the four missing places in the middle,
                fill three of them with a L-Shape tile, leaving a missing square.

            \end{proof}
            
            Way 2: Assume $P(n)$ to be $\forall n, \exists$ way to fill a $2^n \times 2^n$ region with
            the L-Shape tiles with \emph{any} square missing. (Make it stronger.)

    \section*{Appendix}

        ~

        This note is written in \LaTeX.
        
        \LaTeX\ code in my blog: \url{https://blog.csdn.net/weixin_50012998/article/details/113527826}\\

        The webpage of the video: \url{https://www.bilibili.com/video/BV1zt411M7D2?p=2}

\end{document}

% Copyright 2021 Teddy van Jerry

ALL RIGHTS RESERVED © 2021 Teddy van Jerry
欢迎转载,转载请注明出处。


See also

Teddy van Jerry 的导航页

标签:usepackage,begin,end,Introduction,6.042,离散数学,Rightarrow,true,proof
来源: https://blog.csdn.net/weixin_50012998/article/details/113527826

本站声明: 1. iCode9 技术分享网(下文简称本站)提供的所有内容,仅供技术学习、探讨和分享;
2. 关于本站的所有留言、评论、转载及引用,纯属内容发起人的个人观点,与本站观点和立场无关;
3. 关于本站的所有言论和文字,纯属内容发起人的个人观点,与本站观点和立场无关;
4. 本站文章均是网友提供,不完全保证技术分享内容的完整性、准确性、时效性、风险性和版权归属;如您发现该文章侵犯了您的权益,可联系我们第一时间进行删除;
5. 本站为非盈利性的个人网站,所有内容不会用来进行牟利,也不会利用任何形式的广告来间接获益,纯粹是为了广大技术爱好者提供技术内容和技术思想的分享性交流网站。

专注分享技术,共同学习,共同进步。侵权联系[81616952@qq.com]

Copyright (C)ICode9.com, All Rights Reserved.

ICode9版权所有