ICode9

精准搜索请尝试: 精确搜索
首页 > 其他分享> 文章详细

常用的异常检测代码

2021-01-12 22:57:33  阅读:532  来源: 互联网

标签:常用 检测 代码 test train np import outliers clf


对于异常检测的定义,网上文章汗牛充栋,作为经常copy paster的 我只能大概了解一下常用的使用场景,仅以此文记录一下一些经典的常用的异常检测代码 。
感谢 O-A-A 大佬
原文: https://blog.csdn.net/u012194696/article/details/112531362

svm
EllipticEnvelope
IsolationForest
LocalOutlierFactor
pyod

Talk is cheap ,show me the code !

import numpy as np
from scipy import stats
import matplotlib.pyplot as plt
import matplotlib.font_manager

from sklearn import svm
from sklearn.covariance import EllipticEnvelope
from sklearn.ensemble import IsolationForest
from sklearn.neighbors import LocalOutlierFactor

rng = np.random.RandomState(42)

# Example settings
n_samples = 200
outliers_fraction = 0.25
clusters_separation = [0, 1, 2]

# define two outlier detection tools to be compared
classifiers = {
    "One-Class SVM": svm.OneClassSVM(nu=0.95 * outliers_fraction + 0.05,
                                     kernel="rbf", gamma=0.1),
    "Robust covariance": EllipticEnvelope(contamination=outliers_fraction),
    "Isolation Forest": IsolationForest(max_samples=n_samples,
                                        contamination=outliers_fraction,
                                        random_state=rng),
    "Local Outlier Factor": LocalOutlierFactor(
        n_neighbors=35,
        contamination=outliers_fraction)}

# Compare given classifiers under given settings
xx, yy = np.meshgrid(np.linspace(-7, 7, 100), np.linspace(-7, 7, 100))
n_inliers = int((1. - outliers_fraction) * n_samples)
n_outliers = int(outliers_fraction * n_samples)
ground_truth = np.ones(n_samples, dtype=int)
ground_truth[-n_outliers:] = -1

# Fit the problem with varying cluster separation
for i, offset in enumerate(clusters_separation):
    np.random.seed(42)
    # Data generation
    X1 = 0.3 * np.random.randn(n_inliers // 2, 2) - offset
    X2 = 0.3 * np.random.randn(n_inliers // 2, 2) + offset
    X = np.r_[X1, X2]
    # Add outliers
    X = np.r_[X, np.random.uniform(low=-6, high=6, size=(n_outliers, 2))]

    # Fit the model
    plt.figure(figsize=(9, 7))
    for i, (clf_name, clf) in enumerate(classifiers.items()):
        # fit the data and tag outliers
        if clf_name == "Local Outlier Factor":
            y_pred = clf.fit_predict(X)
            scores_pred = clf.negative_outlier_factor_
        else:
            clf.fit(X)
            scores_pred = clf.decision_function(X)
            y_pred = clf.predict(X)

        # 选取预定的前25%的分数的分界线作为阈值
        threshold = stats.scoreatpercentile(scores_pred, 100 * outliers_fraction)

        # 计算误差
        n_errors = (y_pred != ground_truth).sum()

        # 绘制等高线
        if clf_name == "Local Outlier Factor":
            # decision_function is private for LOF
            Z = clf._decision_function(np.c_[xx.ravel(), yy.ravel()])
        else:
            Z = clf.decision_function(np.c_[xx.ravel(), yy.ravel()])
        Z = Z.reshape(xx.shape)
        subplot = plt.subplot(2, 2, i + 1)
        subplot.contourf(xx, yy, Z, levels=np.linspace(Z.min(), threshold, 7),
                         cmap=plt.cm.Blues_r)

        # 用红线画阈值边界
        a = subplot.contour(xx, yy, Z, levels=[threshold],
                            linewidths=2, colors='red')
        # 用橙色填充阈值区域内的背景
        subplot.contourf(xx, yy, Z, levels=[threshold, Z.max()],
                         colors='orange')
        b = subplot.scatter(X[:-n_outliers, 0], X[:-n_outliers, 1], c='white',
                            s=20, edgecolor='k')
        c = subplot.scatter(X[-n_outliers:, 0], X[-n_outliers:, 1], c='black',
                            s=20, edgecolor='k')
        subplot.axis('tight')
        subplot.legend(
            [a.collections[0], b, c],
            ['learned decision function', 'true inliers', 'true outliers'],
            prop=matplotlib.font_manager.FontProperties(size=10),
            loc='lower right')
        subplot.set_xlabel("%d. %s (errors: %d)" % (i + 1, clf_name, n_errors))
        subplot.set_xlim((-7, 7))
        subplot.set_ylim((-7, 7))
    plt.subplots_adjust(0.04, 0.1, 0.96, 0.94, 0.1, 0.26)
    plt.suptitle("Outlier detection")

plt.show()

PyOD

from pyod.models.knn import KNN   # imprt kNN分类器
from pyod.utils.data import generate_data
from pyod.utils.data import evaluate_print
from pyod.utils.example import visualize


contamination = 0.1  # percentage of outliers
n_train = 200  # number of training points
n_test = 100  # number of testing points

X_train, y_train, X_test, y_test = generate_data(
    n_train=n_train, n_test=n_test, contamination=contamination)

# 训练一个kNN检测器
clf_name = 'kNN'
clf = KNN() # 初始化检测器clf
clf.fit(X_train) # 使用X_train训练检测器clf

# 返回训练数据X_train上的异常标签和异常分值
y_train_pred = clf.labels_  # 返回训练数据上的分类标签 (0: 正常值, 1: 异常值)
y_train_scores = clf.decision_scores_  # 返回训练数据上的异常值 (分值越大越异常)

# 用训练好的clf来预测未知数据中的异常值
y_test_pred = clf.predict(X_test)  # 返回未知数据上的分类标签 (0: 正常值, 1: 异常值)
y_test_scores = clf.decision_function(X_test)  #  返回未知数据上的异常值 (分值越大越异常)

# 评估预测结果
print("\nOn Test Data:")
evaluate_print(clf_name, y_test, y_test_scores)

# 可视化
visualize(clf_name, X_train, y_train, X_test, y_test, y_train_pred,
    y_test_pred, show_figure=True, save_figure=False)

标签:常用,检测,代码,test,train,np,import,outliers,clf
来源: https://blog.csdn.net/huochuangchuang/article/details/112549428

本站声明: 1. iCode9 技术分享网(下文简称本站)提供的所有内容,仅供技术学习、探讨和分享;
2. 关于本站的所有留言、评论、转载及引用,纯属内容发起人的个人观点,与本站观点和立场无关;
3. 关于本站的所有言论和文字,纯属内容发起人的个人观点,与本站观点和立场无关;
4. 本站文章均是网友提供,不完全保证技术分享内容的完整性、准确性、时效性、风险性和版权归属;如您发现该文章侵犯了您的权益,可联系我们第一时间进行删除;
5. 本站为非盈利性的个人网站,所有内容不会用来进行牟利,也不会利用任何形式的广告来间接获益,纯粹是为了广大技术爱好者提供技术内容和技术思想的分享性交流网站。

专注分享技术,共同学习,共同进步。侵权联系[81616952@qq.com]

Copyright (C)ICode9.com, All Rights Reserved.

ICode9版权所有