ICode9

精准搜索请尝试: 精确搜索
首页 > 其他分享> 文章详细

2021-01-07 Piazza Question Trans.

2021-01-07 21:31:52  阅读:236  来源: 互联网

标签:mathbb function 01 potential Piazza Question field vector contour


Intro

Sorry that I didn’t notice you’re asking about the contour. My solutions are mostly about the vector field figure instead of the contour.

Reference. Ste16. 16.1. P1072 (E-Ver.)

Below is an intro for the contour of a vector field.
在这里插入图片描述

Here are some further explanations for TA Guan (if you need) - welcome for any correction.

“Actually, a contour is a definition for a R n \mathbb{R}^n Rn to R \mathbb{R} R function.”

Reference. Sample Midterm 2-1 with solutions

Consider the function f : R 2 \mathbb{R}^2 R2 → R \mathbb{R} R defined by
f ( x , y ) = 4 x 1 + x 2 + 2 y 2 f(x,y)=\frac{4x}{1+x^2+2y^2} f(x,y)=1+x2+2y24x​
d) Sketch the contours of f f f for the levels k ∈ { 0 , 1 , 2 , 2 } k \in \{0,1,\sqrt2,2\} k∈{0,1,2 ​,2}
The answer should be
在这里插入图片描述
Notice the form. We only obtain the contour when k is a constant, which means that f(x,y) is 1-dimensional, viz. the form for the contour should be from R n \mathbb{R}^n Rn to R \mathbb{R} R.

Reference. Sample Midterm 2-2 with solutions

在这里插入图片描述
This strengthen our conclusion that the form for the contour should be from R n \mathbb{R}^n Rn to R \mathbb{R} R.

“But a vector field is a R n \mathbb{R}^n Rn to R n \mathbb{R^n} Rn function …”

Reference. Ste16. 16.1 Vector Fields.


From the definition in Ste16, we can find F ⃗ ( x , y ) \vec{F}(x,y) F (x,y) is a vector in the R 2 \mathbb{R^2} R2 plane. This is pretty easy to understand: assume you are discussing a motion in a plane, then iff you use vectors in 2 dimensions, you may express the motion without information loss. Also, a 3-dimentional motion needs a vector that can span for the space.

… so except a 1-D vector field, there is no contour for the vector field.

Pretty easy to comprehend now - to express the “motion” without info loss, you must use the vector with exactly the same number of dimensions. Thus, only 1-dimensional vector field assure a contour (but it’s somewhat meaningless, you know).

I think what you mean is probably a contour for the potential function of a vector field.

Reference. Ste16. 16.3. P1089 (E-Ver.)

在这里插入图片描述
As shown above, the potential function is relevant to the vector field. Notice that in the formula above, F is a vector, but f is a function (called 势函数 in Chinese) - you may link this to “magnetic (or electronic, if you like) potential energy” in physics. Assume F is the magnetic force, then
R ↬ f ( x , y ) ⇔ U c o n s e r v a t i v e ( x , y ) ↫ R 1 = ∫ F ⃗ ∙ d r \mathbb{R}\looparrowright f(x,y) \Leftrightarrow U_{conservative}(x,y)\looparrowleft \mathbb{R1}\\=\int \vec{F}\bullet d\bold{r} R↬f(x,y)⇔Uconservative​(x,y)↫R1=∫F ∙dr

By definition, we know that a potential function is like the energy stored from a motion, viz. the potential function is always in R \mathbb{R} R, cf. what we found about contour, the potential function is more likely to fit in your question.

However, if a vector field is not conservative, then it does not have a potential function.

[Again] Reference. Ste16. 16.3. P1089 (E-Ver.)

在这里插入图片描述

See the same picture above (with annotations). From the context we conclude that,
F ⃗ c o n s e r v a t i v e ≡ ∇ f = F ⃗ \vec{F}_{conservative}\equiv \nabla f=\vec{F} F conservative​≡∇f=F
(because the description is “that is”, which is equiv. to “iff” - this means a definition).

viz. if F is not conservative, then there does not exist a function f(which is the potential function).

So there would be no contour for the potential function of the vector field.

Refer to discussion in the last part, this part seems pretty clear now.

Hope these helps and welcome for any correction.

标签:mathbb,function,01,potential,Piazza,Question,field,vector,contour
来源: https://blog.csdn.net/BiEchi/article/details/112332412

本站声明: 1. iCode9 技术分享网(下文简称本站)提供的所有内容,仅供技术学习、探讨和分享;
2. 关于本站的所有留言、评论、转载及引用,纯属内容发起人的个人观点,与本站观点和立场无关;
3. 关于本站的所有言论和文字,纯属内容发起人的个人观点,与本站观点和立场无关;
4. 本站文章均是网友提供,不完全保证技术分享内容的完整性、准确性、时效性、风险性和版权归属;如您发现该文章侵犯了您的权益,可联系我们第一时间进行删除;
5. 本站为非盈利性的个人网站,所有内容不会用来进行牟利,也不会利用任何形式的广告来间接获益,纯粹是为了广大技术爱好者提供技术内容和技术思想的分享性交流网站。

专注分享技术,共同学习,共同进步。侵权联系[81616952@qq.com]

Copyright (C)ICode9.com, All Rights Reserved.

ICode9版权所有