ICode9

精准搜索请尝试: 精确搜索
首页 > 其他分享> 文章详细

数据科学技术与应用第五章机器学习建模分析

2020-12-08 20:05:15  阅读:276  来源: 互联网

标签:pre 科学技术 clf 建模 test train 第五章 time print


基于Keras建立深度神经网络模型,在bankpep数据集上训练神经网络分类模型,将训练模型的耗时以及模型性能,与XGBoost、SVM、朴素贝叶斯等方法进行比较。

 

import pandas,datetime,xgboost,numpy
from sklearn import model_selection,preprocessing,metrics,tree,naive_bayes,svm
from sklearn.ensemble import RandomForestClassifier,GradientBoostingClassifier
import matplotlib.pyplot as plt
from keras.models import Sequential
from keras.layers import Dense,Activation
from keras.utils import np_utils
from graphviz import Source
from IPython.display import Image

#请根据 bankpep.csv 保存位置适当调整代码
df=pandas.read_csv('data/bankpep.csv',index_col='id')

seq=['married','car','save_act','current_act','mortgage','pep']
for feature in seq:
    df.loc[df[feature]=='YES',feature]=1
    df.loc[df[feature] == 'NO', feature] = 0

df.loc[df['sex']=='FEMALE','sex']=1
df.loc[df['sex']=='MALE','sex']=0

dumm_region=pandas.get_dummies(df['region'],prefix='region')
dumm_child=pandas.get_dummies(df['children'],prefix='children')
df=df.drop(['region','children'],axis=1)
df=df.join([dumm_region,dumm_child],how='outer')

x=df.drop(['pep'],axis=1).values.astype(float)
#x=preprocessing.scale(x)
y=df['pep'].values.astype(int)

x_train,x_test,y_train,y_test=model_selection.train_test_split(x,y,test_size=0.2,random_state=1)

featureName=df.drop(['pep'],axis=1).columns.values
className=['pep','no pep']

#tree
print('Tree')
start_time=datetime.datetime.now()
clf_tree=tree.DecisionTreeClassifier()
clf_tree.fit(x_train,y_train)
pre_y_train_tree=clf_tree.predict(x_train)
pre_y_test_tree=clf_tree.predict(x_test)
print('train_tree')
print(clf_tree.score(x_train,y_train))
print(metrics.classification_report(y_train,pre_y_train_tree))
print(metrics.confusion_matrix(y_train,pre_y_train_tree))
print('test_tree')
tree_score=clf_tree.score(x_test,y_test)
print(tree_score)
print(metrics.classification_report(y_test,pre_y_test_tree))
print(metrics.confusion_matrix(y_test,pre_y_test_tree))
'''
graph_tree=Source(tree.export_graphviz(clf_tree,out_file=None,feature_names=featureName,class_names=className))
png_bytes=graph_tree.pipe(format='png')
with open('mooc_5.2_tree.png','wb') as f:
    f.write(png_bytes)
'''
end_time = datetime.datetime.now()
time_tree=end_time-start_time
print("time:",time_tree)

#naive_bayes.MultinomialNB
print('MultinomialNB')
start_time=datetime.datetime.now()
clf_MultinomialNB=naive_bayes.MultinomialNB()
clf_MultinomialNB.fit(x_train,y_train)
pre_y_train_MultinomialNB=clf_MultinomialNB.predict(x_train)
pre_y_test_MultinomialNB=clf_MultinomialNB.predict(x_test)
print('train_MultinomialNB')
print(clf_MultinomialNB.score(x_train,y_train))
print(metrics.classification_report(y_train,pre_y_train_MultinomialNB))
print(metrics.confusion_matrix(y_train,pre_y_train_MultinomialNB))
print('test_MultinomialNB')
MultinomialNB_score=clf_MultinomialNB.score(x_test,y_test)
print(MultinomialNB_score)
print(metrics.classification_report(y_test,pre_y_test_MultinomialNB))
print(metrics.confusion_matrix(y_test,pre_y_test_MultinomialNB))
end_time=datetime.datetime.now()
time_MultinomialNB=end_time-start_time
print("time:",time_MultinomialNB)

#naive_bayes.GaussianNB
print('GaussianNB')
start_time=datetime.datetime.now()
clf_GaussianNB=naive_bayes.GaussianNB()
clf_GaussianNB.fit(x_train,y_train)
pre_y_train_GaussianNB=clf_GaussianNB.predict(x_train)
pre_y_test_GaussianNB=clf_GaussianNB.predict(x_test)
print('train_GaussianNB')
print(clf_GaussianNB.score(x_train,y_train))
print(metrics.classification_report(y_train,pre_y_train_GaussianNB))
print(metrics.confusion_matrix(y_train,pre_y_train_GaussianNB))
print('test_GaussianNB')
GaussianNB_score=clf_GaussianNB.score(x_test,y_test)
print(GaussianNB_score)
print(metrics.classification_report(y_test,pre_y_test_GaussianNB))
print(metrics.confusion_matrix(y_test,pre_y_test_GaussianNB))
end_time=datetime.datetime.now()
time_GaussianNB=end_time-start_time
print("time:",time_GaussianNB)

#naive_bayes.BernoulliNB
print('BernoulliNB')
start_time=datetime.datetime.now()
clf_BernoulliNB=naive_bayes.BernoulliNB()
clf_BernoulliNB.fit(x_train,y_train)
pre_y_train_BernoulliNB=clf_BernoulliNB.predict(x_train)
pre_y_test_BernoulliNB=clf_BernoulliNB.predict(x_test)
print('train_BernoulliNB')
print(clf_BernoulliNB.score(x_train,y_train))
print(metrics.classification_report(y_train,pre_y_train_BernoulliNB))
print(metrics.confusion_matrix(y_train,pre_y_train_BernoulliNB))
print('test_BernoulliNB')
BernoulliNB_score=clf_BernoulliNB.score(x_test,y_test)
print(BernoulliNB_score)
print(metrics.classification_report(y_test,pre_y_test_BernoulliNB))
print(metrics.confusion_matrix(y_test,pre_y_test_BernoulliNB))
end_time=datetime.datetime.now()
time_BernoulliNB=end_time-start_time
print("time:",time_BernoulliNB)

#SVM
print('SVM')
start_time=datetime.datetime.now()
clf_SVM=svm.SVC()
clf_SVM.fit(x_train,y_train)
pre_y_train_SVM=clf_SVM.predict(x_train)
pre_y_test_SVM=clf_SVM.predict(x_test)
print('train_SVM')
print(clf_SVM.score(x_train,y_train))
print(metrics.classification_report(y_train,pre_y_train_SVM))
print(metrics.confusion_matrix(y_train,pre_y_train_SVM))
print('test_SVM')
SVM_score=clf_SVM.score(x_test,y_test)
print(SVM_score)
print(metrics.classification_report(y_test,pre_y_test_SVM))
print(metrics.confusion_matrix(y_test,pre_y_test_SVM))
end_time=datetime.datetime.now()
time_SVM=end_time-start_time
print("time:",time_SVM)

#GBM
print('GBM')
start_time=datetime.datetime.now()
clf_GBM=GradientBoostingClassifier()
clf_GBM.fit(x_train,y_train)
pre_y_train_GBM=clf_GBM.predict(x_train)
pre_y_test_GBM=clf_GBM.predict(x_test)
print('train_GBM')
print(clf_GBM.score(x_train,y_train))
print(metrics.classification_report(y_train,pre_y_train_GBM))
print(metrics.confusion_matrix(y_train,pre_y_train_GBM))
print('test_GBM')
GBM_score=clf_GBM.score(x_test,y_test)
print(GBM_score)
print(metrics.classification_report(y_test,pre_y_test_GBM))
print(metrics.confusion_matrix(y_test,pre_y_test_GBM))
end_time=datetime.datetime.now()
time_GBM=end_time-start_time
print("time:",time_GBM)

#XGBoost
print('XGBoost')
start_time=datetime.datetime.now()
clf_XGBoost=xgboost.XGBClassifier()
clf_XGBoost.fit(x_train,y_train)
pre_y_train_XGBoost=clf_XGBoost.predict(x_train)
pre_y_test_XGBoost=clf_XGBoost.predict(x_test)
print('train_XGBoost')
print(clf_XGBoost.score(x_train,y_train))
print(metrics.classification_report(y_train,pre_y_train_XGBoost))
print(metrics.confusion_matrix(y_train,pre_y_train_XGBoost))
print('test_XGBoost')
XGBoost_score=clf_XGBoost.score(x_test,y_test)
print(XGBoost_score)
print(metrics.classification_report(y_test,pre_y_test_XGBoost))
print(metrics.confusion_matrix(y_test,pre_y_test_XGBoost))
end_time=datetime.datetime.now()
time_XGBoost=end_time-start_time
print("time:",time_XGBoost)

#RandomForestClassifier
print('RFC')
start_time=datetime.datetime.now()
clf_RFC=RandomForestClassifier()
clf_RFC.fit(x_train,y_train)
pre_y_train_RFC=clf_RFC.predict(x_train)
pre_y_test_RFC=clf_RFC.predict(x_test)
print('train_RFC')
print(clf_RFC.score(x_train,y_train))
print(metrics.classification_report(y_train,pre_y_train_RFC))
print(metrics.confusion_matrix(y_train,pre_y_train_RFC))
print('test_RFC')
RFC_score=clf_RFC.score(x_test,y_test)
print(RFC_score)
print(metrics.classification_report(y_test,pre_y_test_RFC))
print(metrics.confusion_matrix(y_test,pre_y_test_RFC))
end_time=datetime.datetime.now()
time_RFC=end_time-start_time
print("time:",time_RFC)

#Keras
print('Keras')
start_time=datetime.datetime.now()
model=Sequential()
model.add(Dense(units=16,input_shape=(16,)))
model.add(Activation('relu'))
model.add(Dense(100))
model.add(Activation('relu'))
model.add(Dense(2))
model.add(Activation('softmax'))
model.compile(loss='categorical_crossentropy',optimizer='adam',metrics=['binary_accuracy'])
y_train_ohe=np_utils.to_categorical(y_train,2)
y_test_ohe=np_utils.to_categorical(y_test,2)
model.fit(x_train,y_train_ohe,epochs=25,batch_size=1,verbose=2,validation_data=(x_test,y_test_ohe))
loss,accuracy=model.evaluate(x_test,y_test_ohe)
print(loss,accuracy)
classes=model.predict(x_test,batch_size=1,verbose=2)
Keras_score=loss
end_time=datetime.datetime.now()
time_Keras=end_time-start_time
print("time:",time_Keras)

#Matplotlib
model=['tree','MultinomialNB','GaussianNB','BernoulliNB','SVM','GBM','XGBoost','RFC']
column=['Score','Time']
datas=[]
for i in model:
    data=[]
    data.append(eval(i+"_score"))
    data.append(eval("time_"+i).total_seconds())
    datas.append(data)
df_Matplotlib=pandas.DataFrame(datas,columns=column,index=model)
print(df_Matplotlib)
print('Keras',loss,accuracy,time_Keras.total_seconds())
df_Matplotlib.plot()
plt.grid()
plt.show()

输出结果:

                  Score      Time
tree           0.775000  0.081810
MultinomialNB  0.666667  0.009974
GaussianNB     0.700000  0.008011
BernoulliNB    0.741667  0.009941
SVM            0.566667  0.027959
GBM            0.825000  0.100698
XGBoost        0.816667  0.153870
RFC            0.833333  0.282304
Keras 0.6881586909294128 0.550000011920929 13.049028

 

标签:pre,科学技术,clf,建模,test,train,第五章,time,print
来源: https://www.cnblogs.com/fydkk/p/14105311.html

本站声明: 1. iCode9 技术分享网(下文简称本站)提供的所有内容,仅供技术学习、探讨和分享;
2. 关于本站的所有留言、评论、转载及引用,纯属内容发起人的个人观点,与本站观点和立场无关;
3. 关于本站的所有言论和文字,纯属内容发起人的个人观点,与本站观点和立场无关;
4. 本站文章均是网友提供,不完全保证技术分享内容的完整性、准确性、时效性、风险性和版权归属;如您发现该文章侵犯了您的权益,可联系我们第一时间进行删除;
5. 本站为非盈利性的个人网站,所有内容不会用来进行牟利,也不会利用任何形式的广告来间接获益,纯粹是为了广大技术爱好者提供技术内容和技术思想的分享性交流网站。

专注分享技术,共同学习,共同进步。侵权联系[81616952@qq.com]

Copyright (C)ICode9.com, All Rights Reserved.

ICode9版权所有