ICode9

精准搜索请尝试: 精确搜索
首页 > 其他分享> 文章详细

UA SIE545 优化理论基础2 凸函数 概念 理论 总结

2020-12-08 09:31:36  阅读:247  来源: 互联网

标签:mathbb set bar 凸函数 SIE545 convex x2 x1 UA


UA SIE545 优化理论基础2 凸函数 概念 理论 总结


凸函数的概念与简单性质

Convex function f : S → R f:S \to \mathbb{R} f:S→R where S S S is a nonempty convex set. Call f f f a convex function on S S S if ∀ x 1 , x 2 ∈ S \forall x_1,x_2 \in S ∀x1​,x2​∈S, λ ∈ ( 0 , 1 ) \lambda \in (0,1) λ∈(0,1)
f ( λ x 1 + ( 1 − λ ) x 2 ) ≤ λ f ( x 1 ) + ( 1 − λ ) f ( x 2 ) f(\lambda x_1+(1-\lambda)x_2) \le \lambda f(x_1)+(1-\lambda)f(x_2) f(λx1​+(1−λ)x2​)≤λf(x1​)+(1−λ)f(x2​)

Call f f f a strictly convex function on S S S if ∀ x 1 , x 2 ∈ S \forall x_1,x_2 \in S ∀x1​,x2​∈S, λ ∈ ( 0 , 1 ) \lambda \in (0,1) λ∈(0,1)
f ( λ x 1 + ( 1 − λ ) x 2 ) < λ f ( x 1 ) + ( 1 − λ ) f ( x 2 ) f(\lambda x_1+(1-\lambda)x_2) < \lambda f(x_1)+(1-\lambda)f(x_2) f(λx1​+(1−λ)x2​)<λf(x1​)+(1−λ)f(x2​)

Call f f f a (strictly) concave function on S S S if − f -f −f is (strictly) convex.

Level set

  1. Lower-level set: S α = { x ∈ S : f ( x ) ≤ α } S_{\alpha} = \{x \in S:f(x) \le \alpha\} Sα​={x∈S:f(x)≤α}
  2. Upper-level set: { x ∈ S : f ( x ) ≥ α } \{x \in S:f(x) \ge \alpha\} {x∈S:f(x)≥α}

Properties

  1. If f f f is a convex function, S α S_{\alpha} Sα​ is a convex set.
  2. f ∈ C ( i n t S ) f \in C(int S) f∈C(intS) ( f f f is continuous on the interior of S S S)
  3. For R n \mathbb{R}^n Rn convex function f f f, any non-zero directional derivative exists. ∃ lim ⁡ λ → 0 + f ( x ˉ + λ d ) − f ( x ˉ ) λ , x ˉ ∈ S , x ˉ + λ d ∈ S \exists \lim_{\lambda \to 0^+}\frac{f(\bar x+\lambda d)-f(\bar x)}{\lambda},\bar x \in S,\bar x + \lambda d \in S ∃λ→0+lim​λf(xˉ+λd)−f(xˉ)​,xˉ∈S,xˉ+λd∈S

次梯度(sub-gradient)

epigraph f : S → R f:S \to \mathbb{R} f:S→R where S S S is a nonempty convex set.
e p i   f = { ( x , y ) : x ∈ S , y ∈ R , y ≥ f ( x ) } epi \ f = \{(x,y):x \in S, y \in \mathbb{R}, y \ge f(x)\} epi f={(x,y):x∈S,y∈R,y≥f(x)}

hypograph f : S → R f:S \to \mathbb{R} f:S→R where S S S is a nonempty convex set.
h y p   f = { ( x , y ) : x ∈ S , y ∈ R , y ≤ f ( x ) } hyp \ f = \{(x,y):x \in S, y \in \mathbb{R}, y \le f(x)\} hyp f={(x,y):x∈S,y∈R,y≤f(x)}

Property f : S → R f:S \to \mathbb{R} f:S→R where S S S is a nonempty convex set. f f f is convex iff e p i   f epi \ f epi f is convex.

subgradient f : S → R f:S \to \mathbb{R} f:S→R is convex where S S S is a nonempty convex set. Then ξ \xi ξ is called subgradient of f f f at x ˉ \bar x xˉ if
f ( x ) ≥ f ( x ˉ ) + ξ T ( x − x ˉ ) , ∀ x ∈ S f(x) \ge f(\bar x)+\xi^T(x-\bar x),\forall x \in S f(x)≥f(xˉ)+ξT(x−xˉ),∀x∈S

f : S → R f:S \to \mathbb{R} f:S→R is concave where S S S is a nonempty convex set. Then ξ \xi ξ is called subgradient of f f f at x ˉ \bar x xˉ if
f ( x ) ≤ f ( x ˉ ) + ξ T ( x − x ˉ ) , ∀ x ∈ S f(x) \le f(\bar x)+\xi^T(x-\bar x),\forall x \in S f(x)≤f(xˉ)+ξT(x−xˉ),∀x∈S

Property

  1. f : S → R f:S \to \mathbb{R} f:S→R is convex where S S S is a nonempty convex set. ∀ x ˉ ∈ i n t S \forall \bar x \in intS ∀xˉ∈intS, ∃ ξ \exists \xi ∃ξ such that
    f ( x ) ≥ f ( x ˉ ) + ξ T ( x − x ˉ ) , ∀ x ∈ S f(x) \ge f(\bar x)+\xi^T(x-\bar x),\forall x \in S f(x)≥f(xˉ)+ξT(x−xˉ),∀x∈Sand the hyperplane
    H = { ( x , y ) : y = f ( x ˉ ) + ξ T ( x − x ˉ ) } H = \{(x,y):y = f(\bar x)+\xi^T(x-\bar x)\} H={(x,y):y=f(xˉ)+ξT(x−xˉ)}supports e p i   f epi\ f epi f at ( x ˉ , f ( x ˉ ) ) (\bar x,f(\bar x)) (xˉ,f(xˉ)).
  2. f : S → R f:S \to \mathbb{R} f:S→R is strictly convex where S S S is a nonempty convex set. ∀ x ˉ ∈ i n t S \forall \bar x \in intS ∀xˉ∈intS, ∃ ξ \exists \xi ∃ξ such that
    f ( x ) > f ( x ˉ ) + ξ T ( x − x ˉ ) , ∀ x ∈ S f(x)> f(\bar x)+\xi^T(x-\bar x),\forall x \in S f(x)>f(xˉ)+ξT(x−xˉ),∀x∈S
  3. f : S → R f:S \to \mathbb{R} f:S→R where S S S is a nonempty convex set. If ∀ x ˉ ∈ i n t S \forall \bar x \in intS ∀xˉ∈intS, ∃ ξ \exists \xi ∃ξ such that
    f ( x ) ≥ f ( x ˉ ) + ξ T ( x − x ˉ ) , ∀ x ∈ S f(x) \ge f(\bar x)+\xi^T(x-\bar x),\forall x \in S f(x)≥f(xˉ)+ξT(x−xˉ),∀x∈Sthen f f f is convex.

可微的凸函数

differentiable f : S → R f:S \to \mathbb{R} f:S→R where S S S is a nonempty set. Say f f f is differentiable at x ˉ ∈ i n t S \bar x \in int S xˉ∈intS if ∃ β \exists \beta ∃β such that
f ( x ) = f ( x ˉ ) + β T ( x − x ˉ ) + o ( ∥ x − x ˉ ∥ ) β = ∇ f ( x ˉ ) f(x)=f(\bar x)+\beta^T(x-\bar x)+o(\left\| x-\bar x \right\|) \\ \beta = \nabla f(\bar x) f(x)=f(xˉ)+βT(x−xˉ)+o(∥x−xˉ∥)β=∇f(xˉ)

Property

  1. f : S → R f:S \to \mathbb{R} f:S→R is convex where S S S is a nonempty convex set. If f f f is differentiable at x ˉ \bar x xˉ, then ∇ f ( x ˉ ) \nabla f(\bar x) ∇f(xˉ) is subgradient.
  2. f : S → R f:S \to \mathbb{R} f:S→R where S S S is a nonempty convex set. f f f is differentiable at x ˉ \bar x xˉ, then f f f is convex iff ∀ x ˉ ∈ S \forall \bar x \in S ∀xˉ∈S, f ( x ) ≥ f ( x ˉ ) + ∇ f ( x ˉ ) T ( x − x ˉ ) , ∀ x ∈ S f(x) \ge f(\bar x)+\nabla f(\bar x)^T(x-\bar x),\forall x \in S f(x)≥f(xˉ)+∇f(xˉ)T(x−xˉ),∀x∈S
  3. f : S → R f:S \to \mathbb{R} f:S→R where S S S is a nonempty convex set. f f f is differentiable on S S S, then f f f is convex iff ∀ x 1 , x 2 ∈ S \forall x_1, x_2 \in S ∀x1​,x2​∈S, [ ∇ f ( x 2 ) − ∇ f ( x 1 ) ] T ( x 2 − x 1 ) ≥ 0 [\nabla f(x_2)-\nabla f(x_1)]^T(x_2-x_1) \ge 0 [∇f(x2​)−∇f(x1​)]T(x2​−x1​)≥0

PSD positive semi-definite, ∀ x ∈ R n \forall x \in \mathbb{R}^n ∀x∈Rn, x T H x ≥ 0 x^THx \ge 0 xTHx≥0
PD positive definite, ∀ x ∈ R n \forall x \in \mathbb{R}^n ∀x∈Rn, x T H x > 0 x^THx > 0 xTHx>0

Tips for checking PSD/PD

  1. ∀ i , H i i < 0 \forall i,H_{ii}<0 ∀i,Hii​<0, H H H is not PSD; ∀ i , H i i ≤ 0 \forall i,H_{ii} \le 0 ∀i,Hii​≤0, H H H is not PD;
  2. main sub-matrix is PSD/PD then H H H is PSD/PD
  3. if H T = H H^T=H HT=H, PD = PSD+nonsingular
  4. if H H H is 2 × 2 2 \times 2 2×2, H 11 > 0 , H 22 > 0 , ∣ H ∣ > 0 H_{11}>0,H_{22}>0,|H|>0 H11​>0,H22​>0,∣H∣>0 means H H H is PD

Property

  1. f : S → R f:S \to \mathbb{R} f:S→R where S S S is a nonempty convex set. f f f is twice differentiable on S S S, then f f f is convex iff H f ( x ˉ ) Hf(\bar x) Hf(xˉ) is PSD.
  2. f : S → R f:S \to \mathbb{R} f:S→R where S S S is a nonempty convex set. f f f is twice differentiable on S S S, then if H f ( x ˉ ) Hf(\bar x) Hf(xˉ) is PD, f f f is strictly convex; if f f f is strictly convex, H f ( x ˉ ) Hf(\bar x) Hf(xˉ) is PSD; if f f f is strictly convex and quadratic, H f ( x ˉ ) Hf(\bar x) Hf(xˉ) is PD
  3. f : S → R f:S \to \mathbb{R} f:S→R where S S S is a nonempty convex set. f f f is infinitely differentiable on S S S, then f f f is strictly convex at x ˉ \bar x xˉ iff f ( n ) ( x ˉ ) > 0 f^{(n)}(\bar x)>0 f(n)(xˉ)>0 and f ( j ) ( x ) = 0 , ∀ 1 < j < n f^{(j)}(x) = 0,\forall 1< j<n f(j)(x)=0,∀1<j<n

凸函数的推广

quasiconvex f : S → R f:S \to \mathbb{R} f:S→R where S S S is a nonempty convex set. ∀ x 1 , x 2 ∈ S \forall x_1,x_2 \in S ∀x1​,x2​∈S, f ( λ x 1 + ( 1 − λ ) x 2 ) ≤ max ⁡ ( f ( x 1 ) , f ( x 2 ) ) f(\lambda x_1+(1-\lambda)x_2) \le \max(f(x_1),f(x_2)) f(λx1​+(1−λ)x2​)≤max(f(x1​),f(x2​))

Property

  1. f f f is quasiconvex iff ∀ α \forall \alpha ∀α, S α S_{\alpha} Sα​ is convex
  2. S S S is nonempty compact polyhedral then ∃ x ˉ \exists \bar x ∃xˉ that is both an extreme point of S S S and also the optimal solution to min ⁡ S f ( x ) \min_S f(x) minS​f(x)
  3. S S S is open convex, f f f is differentiable. f f f is quasiconvex iff one of the following is correct: if x 1 , x 2 ∈ S x_1,x_2 \in S x1​,x2​∈S, f ( x 1 ) ≤ f ( x 2 ) f(x_1) \le f(x_2) f(x1​)≤f(x2​), then ∇ f ( x 2 ) T ( x 1 − x 2 ) ≤ 0 \nabla f(x_2)^T(x_1-x_2) \le 0 ∇f(x2​)T(x1​−x2​)≤0 or if x 1 , x 2 ∈ S x_1,x_2 \in S x1​,x2​∈S, ∇ f ( x 2 ) T ( x 1 − x 2 ) ≤ 0 \nabla f(x_2)^T(x_1-x_2) \le 0 ∇f(x2​)T(x1​−x2​)≤0, then f ( x 1 ) ≤ f ( x 2 ) f(x_1) \le f(x_2) f(x1​)≤f(x2​)

strict quasiconvex f : S → R f:S \to \mathbb{R} f:S→R where S S S is a nonempty convex set. ∀ x 1 , x 2 ∈ S \forall x_1,x_2 \in S ∀x1​,x2​∈S, f ( x 1 ) ≠ f ( x 2 ) f(x_1) \ne f(x_2) f(x1​)​=f(x2​), f ( λ x 1 + ( 1 − λ ) x 2 ) < max ⁡ ( f ( x 1 ) , f ( x 2 ) ) f(\lambda x_1+(1-\lambda)x_2) < \max(f(x_1),f(x_2)) f(λx1​+(1−λ)x2​)<max(f(x1​),f(x2​))

Property

  1. If x ˉ \bar x xˉ is local minimum to min ⁡ S f ( x ) \min_S f(x) minS​f(x) where S S S is convex, then x ˉ \bar x xˉ is global minimum.

strong quasiconvex
f : S → R f:S \to \mathbb{R} f:S→R where S S S is a nonempty convex set. ∀ x 1 , x 2 ∈ S \forall x_1,x_2 \in S ∀x1​,x2​∈S, x 1 ≠ x 2 x_1 \ne x_2 x1​​=x2​, f ( λ x 1 + ( 1 − λ ) x 2 ) < max ⁡ ( f ( x 1 ) , f ( x 2 ) ) f(\lambda x_1+(1-\lambda)x_2) < \max(f(x_1),f(x_2)) f(λx1​+(1−λ)x2​)<max(f(x1​),f(x2​))

Property

  1. strong quasiconvex leads to strict quasiconvex
  2. If x ˉ \bar x xˉ is local minimum to min ⁡ S f ( x ) \min_S f(x) minS​f(x) where S S S is convex, then x ˉ \bar x xˉ is unique global minimum.

Pseudoconvex ∀ x 1 , x 2 ∈ X \forall x_1,x_2 \in X ∀x1​,x2​∈X such that ∇ f ( x 1 ) T ( x 2 − x 1 ) ≥ 0 \nabla f(x_1)^T(x_2-x_1) \ge 0 ∇f(x1​)T(x2​−x1​)≥0, we have f ( x 2 ) ≥ f ( x 1 ) f(x_2) \ge f(x_1) f(x2​)≥f(x1​).

Property

  1. Pseudoconvex + differentiable = strict quasiconvex
  2. Strict Pseudoconvex + differentiable = strong quasiconvex

标签:mathbb,set,bar,凸函数,SIE545,convex,x2,x1,UA
来源: https://blog.csdn.net/weixin_44207974/article/details/110849303

本站声明: 1. iCode9 技术分享网(下文简称本站)提供的所有内容,仅供技术学习、探讨和分享;
2. 关于本站的所有留言、评论、转载及引用,纯属内容发起人的个人观点,与本站观点和立场无关;
3. 关于本站的所有言论和文字,纯属内容发起人的个人观点,与本站观点和立场无关;
4. 本站文章均是网友提供,不完全保证技术分享内容的完整性、准确性、时效性、风险性和版权归属;如您发现该文章侵犯了您的权益,可联系我们第一时间进行删除;
5. 本站为非盈利性的个人网站,所有内容不会用来进行牟利,也不会利用任何形式的广告来间接获益,纯粹是为了广大技术爱好者提供技术内容和技术思想的分享性交流网站。

专注分享技术,共同学习,共同进步。侵权联系[81616952@qq.com]

Copyright (C)ICode9.com, All Rights Reserved.

ICode9版权所有