ICode9

精准搜索请尝试: 精确搜索
首页 > 其他分享> 文章详细

pytorch

2020-09-22 12:33:47  阅读:205  来源: 互联网

标签:nn self torch pytorch 64 128 Size


PyTorch-网络的创建,预训练模型的加载

 

本文是PyTorch使用过程中的的一些总结,有以下内容:

  • 构建网络模型的方法
  • 网络层的遍历
  • 各层参数的遍历
  • 模型的保存与加载
  • 从预训练模型为网络参数赋值

主要涉及到以下函数的使用

  • add_module,ModulesList,Sequential 模型创建
  • modules(),named_modules(),children(),named_children() 访问模型的各个子模块
  • parameters(),named_parameters() 网络参数的遍历
  • save(),load()state_dict() 模型的保存与加载

构建网络

torch.nn.Module是所有网络的基类,在Pytorch实现的Model都要继承该类。而且,Module是可以包含其他的Module的,以树形的结构来表示一个网络结构。

简单的定义一个网络Model

class Model(nn.Module):
    def __init__(self):
        super(Model,self).__init__()
        self.conv1 = nn.Conv2d(3,64,3)
        self.conv2 = nn.Conv2d(64,64,3)

    def forward(self,x):
        x = self.conv1(x)
        x = self.conv2(x)
        return x

Model中两个属性conv1conv2是两个卷积层,在正向传播的过程中,再依次调用这两个卷积层。

除了使用Model的属性来为网络添加层外,还可以使用add_module将网络层添加到网络中。

class Model(nn.Module):
    def __init__(self):
        super(Model,self).__init__()
        self.conv1 = nn.Conv2d(3,64,3)
        self.conv2 = nn.Conv2d(64,64,3)

        self.add_module("maxpool1",nn.MaxPool2d(2,2))
        self.add_module("covn3",nn.Conv2d(64,128,3))
        self.add_module("conv4",nn.Conv2d(128,128,3))

    def forward(self,x):
        x = self.conv1(x)
        x = self.conv2(x)
        x = self.maxpool1(x)
        x = self.conv3(x)
        x = self.conv4(x)
        return x

add_module(name,layer)在正向传播的过程中可以使用添加时的name来访问改layer。

这样一个个的添加layer,在简单的网络中还行,但是对于负责的网络层很多的网络来说就需要敲很多重复的代码了。 这就需要使用到torch.nn.ModuleListtorch.nn.Sequential

使用ModuleListSequential可以方便添加子网络到网络中,但是这两者还是有所不同的。

ModuleList

ModuleList是以list的形式保存sub-modules或者网络层,这样就可以先将网络需要的layer构建好保存到一个list,然后通过ModuleList方法添加到网络中。

class MyModule(nn.Module):
    def __init__(self):
        super(MyModule,self).__init__()

        # 构建layer的list
        self.linears = nn.ModuleList([nn.Linear(10, 10) for i in range(10)])

    def forward(self,x):

        # 正向传播,使用遍历每个Layer
        for i, l in enumerate(self.linears):
            x = self.linears[i // 2](x) + l(x)

        return x

使用[nn.Linear(10, 10) for i in range(10)]构建要给Layer的list,然后使用ModuleList添加到网络中,在正向传播的过程中,遍历该list

更为方便的是,可以提前配置后,所需要的各个Layer的属性,然后读取配置创建list,然后使用ModuleList将配置好的网络层添加到网络中。 以VGG为例:

vgg_cfg = [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 'C', 512, 512, 512, 'M',
           512, 512, 512, 'M']

def vgg(cfg, i, batch_norm=False):
    layers = []
    in_channels = i
    for v in cfg:
        if v == 'M':
            layers += [nn.MaxPool2d(kernel_size=2, stride=2)]
        elif v == 'C':
            layers += [nn.MaxPool2d(kernel_size=2, stride=2, ceil_mode=True)]
        else:
            conv2d = nn.Conv2d(in_channels, v, kernel_size=3, padding=1)
            if batch_norm:
                layers += [conv2d, nn.BatchNorm2d(v), nn.ReLU(inplace=True)]
            else:
                layers += [conv2d, nn.ReLU(inplace=True)]
            in_channels = v
    return layers

class Model1(nn.Module):
    def __init__(self):
        super(Model1,self).__init__()

        self.vgg = nn.ModuleList(vgg(vgg_cfg,3))

    def forward(self,x):

        for l in self.vgg:
            x = l(x)
m1 = Model1()
print(m1)

读取配置好的网络结构vgg_cfg然后,创建相应的Layer List,使用ModuleList加入到网络中。这样就可以很灵活的创建不同的网络。

这里需要注意的是,ModuleList是将Module加入网络中,需要自己手动的遍历进行每一个Moduleforward

Sequential

一个时序容器。Modules 会以他们传入的顺序被添加到容器中。当然,也可以传入一个OrderedDict一个时序容器。Modules 会以他们传入的顺序被添加到容器中。当然,也可以传入一个OrderedDict
Sequential也是一次加入多个Module到网络中中,和ModuleList不同的是,它接受多个Module依次加入到网络中,还可以接受字典作为参数,例如:

# Example of using Sequential
        model = nn.Sequential(
                  nn.Conv2d(1,20,5),
                  nn.ReLU(),
                  nn.Conv2d(20,64,5),
                  nn.ReLU()
                )

# Example of using Sequential with OrderedDict
model = nn.Sequential(OrderedDict([
    ('conv1', nn.Conv2d(1,20,5)),
    ('relu1', nn.ReLU()),
    ('conv2', nn.Conv2d(20,64,5)),
    ('relu2', nn.ReLU())
    ]))

另一个是,Sequential中实现了添加Module的forward,不需要手动的循环调用了。这点相比ModuleList较为方便。

总结

常见的有三种方法来添加子Module到网络中

  • 单独添加一个Module,可以使用属性或者add_module方法。
  • ModuleList可以将一个Module的List加入到网络中,自由度较高,但是需要手动的遍历ModuleList进行forward
  • Sequential按照顺序将将Module加入到网络中,也可以处理字典。 相比于ModuleList不需要自己实现forward

遍历网络结构

可以使用以下2对4个方法来访问网络层所有的Modules

  • modules() 和 named_modules()
  • children() 和 named_children()

modules方法

简单的定义一个如下网络:

class Model(nn.Module):
    def __init__(self):
        super(Model,self).__init__()
        self.conv1 = nn.Conv2d(in_channels=3,out_channels=64,kernel_size=3)
        self.conv2 = nn.Conv2d(64,64,3)
        self.maxpool1 = nn.MaxPool2d(2,2)

        self.features = nn.Sequential(OrderedDict([
            ('conv3', nn.Conv2d(64,128,3)),
            ('conv4', nn.Conv2d(128,128,3)),
            ('relu1', nn.ReLU())
        ]))

    def forward(self,x):
        x = self.conv1(x)
        x = self.conv2(x)
        x = self.maxpool1(x)
        x = self.features(x)

        return x

modules()方法,返回一个包含当前模型所有模块的迭代器,这个是递归的返回网络中的所有Module。使用如下语句

    m = Model()
    for idx,m in enumerate(m.modules()):
        print(idx,"-",m)

其结果为:

0 - Model(
  (conv1): Conv2d(3, 64, kernel_size=(3, 3), stride=(1, 1))
  (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1))
  (maxpool1): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
  (features): Sequential(
    (conv3): Conv2d(64, 128, kernel_size=(3, 3), stride=(1, 1))
    (conv4): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1))
    (relu1): ReLU()
  )
)
1 - Conv2d(3, 64, kernel_size=(3, 3), stride=(1, 1))
2 - Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1))
3 - MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
4 - Sequential(
  (conv3): Conv2d(64, 128, kernel_size=(3, 3), stride=(1, 1))
  (conv4): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1))
  (relu1): ReLU()
)
5 - Conv2d(64, 128, kernel_size=(3, 3), stride=(1, 1))
6 - Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1))
7 - ReLU()

输出结果解析:

  • 0-Model 整个网络模块
  • 1-2-3-4 为网络的4个子模块,注意4 - Sequential仍然包含有子模块
  • 5-6-7为模块4 - Sequential的子模块

可以看出modules()是递归的返回网络的各个module,从最顶层直到最后的叶子module。

named_modules()的功能和modules()的功能类似,不同的是它返回内容有两部分:module的名称以及module。

children()方法

modules()不同,children()只返回当前模块的子模块,不会递归子模块。

    for idx,m in enumerate(m.children()):
        print(idx,"-",m)

其输出为:

0 - Conv2d(3, 64, kernel_size=(3, 3), stride=(1, 1))
1 - Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1))
2 - MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
3 - Sequential(
  (conv3): Conv2d(64, 128, kernel_size=(3, 3), stride=(1, 1))
  (conv4): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1))
  (relu1): ReLU()
)

子模块3-Sequential仍然有子模块,children()没有递归的返回。
named_children()children()的功能类似,不同的是其返回两部分内容:模块的名称以及模块本身。

网络的参数

方法parameters()返回一个包含模型所有参数的迭代器。一般用来当作optimizer的参数。

    for p in m.parameters():
        print(type(p.data),p.size())

其输出为:

<class 'torch.Tensor'> torch.Size([128, 64, 3, 3])
<class 'torch.Tensor'> torch.Size([128])
<class 'torch.Tensor'> torch.Size([128, 128, 3, 3])
<class 'torch.Tensor'> torch.Size([128])

包含网络中的所有的权值矩阵参数以及偏置参数。 对网络进行训练时需要将parameters()作为优化器optimizer的参数。

optimizer = torch.optim.SGD(m1.parameters(),lr = args.lr,momentum=args.momentum,weight_decay=args.weight_decay)

parameters()返回网络的所有参数,主要是提供给optimizer用的。而要取得网络某一层的参数或者参数进行一些特殊的处理(如fine-tuning),则使用named_parameters()更为方便些。

named_parameters()返回参数的名称及参数本身,可以按照参数名对一些参数进行处理。

以上面的vgg网络为例:

for k,v in m1.named_parameters():
    print(k,v.size())

named_parameters返回的是键值对,k为参数的名称 ,v为参数本身。输出结果为:

vgg.0.weight torch.Size([64, 3, 3, 3])
vgg.0.bias torch.Size([64])
vgg.2.weight torch.Size([64, 64, 3, 3])
vgg.2.bias torch.Size([64])
vgg.5.weight torch.Size([128, 64, 3, 3])
vgg.5.bias torch.Size([128])
vgg.7.weight torch.Size([128, 128, 3, 3])
vgg.7.bias torch.Size([128])
vgg.10.weight torch.Size([256, 128, 3, 3])
vgg.10.bias torch.Size([256])
vgg.12.weight torch.Size([256, 256, 3, 3])
vgg.12.bias torch.Size([256])
vgg.14.weight torch.Size([256, 256, 3, 3])
vgg.14.bias torch.Size([256])
vgg.17.weight torch.Size([512, 256, 3, 3])
vgg.17.bias torch.Size([512])
vgg.19.weight torch.Size([512, 512, 3, 3])
vgg.19.bias torch.Size([512])
vgg.21.weight torch.Size([512, 512, 3, 3])
vgg.21.bias torch.Size([512])
vgg.24.weight torch.Size([512, 512, 3, 3])
vgg.24.bias torch.Size([512])
vgg.26.weight torch.Size([512, 512, 3, 3])
vgg.26.bias torch.Size([512])
vgg.28.weight torch.Size([512, 512, 3, 3])
vgg.28.bias torch.Size([512])

参数名的命名规则属性名称.参数属于的层的编号.weight/bias。 这在fine-tuning的时候,给一些特定的层的参数赋值是非常方便的,这点在后面在加载预训练模型时会看到。

模型的保存与加载

PyTorch使用torch.savetorch.load方法来保存和加载网络,而且网络结构和参数可以分开的保存和加载。

  • 保存网络结构及其参数
torch.save(model,'model.pth') # 保存
model = torch.load("model.pth") # 加载
  • 只加载模型参数,网络结构从代码中创建
torch.save(model.state_dict(),"model.pth") # 保存参数
model = model() # 代码中创建网络结构
params = torch.load("model.pth") # 加载参数
model.load_state_dict(params) # 应用到网络结构中

加载预训练模型

PyTorch中的torchvision里有很多常用网络的预训练模型,例如:vgg,resnet,googlenet等,可以方便的使用这些预训练模型进行微调。

# PyTorch中的torchvision里有很多常用的模型,可以直接调用:
import torchvision.models as models
 
resnet101 = models.resnet18(pretrained=True)
alexnet = models.alexnet()
squeezenet = models.squeezenet1_0()

有时候只需要加载预训练模型的部分参数,可以使用参数名作为过滤条件,如下

resnet152 = models.resnet152(pretrained=True)
pretrained_dict = resnet152.state_dict()
"""加载torchvision中的预训练模型和参数后通过state_dict()方法提取参数
   也可以直接从官方model_zoo下载:
   pretrained_dict = model_zoo.load_url(model_urls['resnet152'])"""
model_dict = model.state_dict()
# 将pretrained_dict里不属于model_dict的键剔除掉
pretrained_dict = {k: v for k, v in pretrained_dict.items() if k in model_dict}
# 更新现有的model_dict
model_dict.update(pretrained_dict)
# 加载我们真正需要的state_dict
model.load_state_dict(model_dict)

model.state_dict()返回一个python的字典对象,将每一层与它的对应参数建立映射关系(如model的每一层的weights及偏置等等)。注意,只有有参数训练的层才会被保存。

上述的加载方式,是按照参数名类匹配过滤的,但是对于一些参数名称无法完全匹配,或者在预训练模型的基础上新添加的一些层,这些层无法从预训练模型中获取参数,需要初始化。

仍然以上述的vgg为例,在标准的vgg16的特征提取后面,新添加两个卷积层,这两个卷积层的参数需要进行初始化。

vgg = torch.load("vgg.pth") # 加载预训练模型

for k,v in m1.vgg.named_parameters():
	k = "features.{}".format(k) # 参数名称
	if k in vgg.keys():
		v.data = vgg[k].data # 直接加载预训练参数
	else:
		if k.find("weight") >= 0:
			nn.init.xavier_normal_(v.data) # 没有预训练,则使用xavier初始化
		else:
			nn.init.constant_(v.data,0) # bias 初始化为0

标签:nn,self,torch,pytorch,64,128,Size
来源: https://www.cnblogs.com/wddxx/p/13711344.html

本站声明: 1. iCode9 技术分享网(下文简称本站)提供的所有内容,仅供技术学习、探讨和分享;
2. 关于本站的所有留言、评论、转载及引用,纯属内容发起人的个人观点,与本站观点和立场无关;
3. 关于本站的所有言论和文字,纯属内容发起人的个人观点,与本站观点和立场无关;
4. 本站文章均是网友提供,不完全保证技术分享内容的完整性、准确性、时效性、风险性和版权归属;如您发现该文章侵犯了您的权益,可联系我们第一时间进行删除;
5. 本站为非盈利性的个人网站,所有内容不会用来进行牟利,也不会利用任何形式的广告来间接获益,纯粹是为了广大技术爱好者提供技术内容和技术思想的分享性交流网站。

专注分享技术,共同学习,共同进步。侵权联系[81616952@qq.com]

Copyright (C)ICode9.com, All Rights Reserved.

ICode9版权所有