ICode9

精准搜索请尝试: 精确搜索
首页 > 其他分享> 文章详细

相机模型和双目立体匹配

2020-02-21 17:07:04  阅读:428  来源: 互联网

标签:立体匹配 双目 像素 相机 disparity include 坐标系 视差


 个人博客:http://www.chenjianqu.com/

原文链接:http://www.chenjianqu.com/show-80.html

本文是读高翔大佬的<视觉SLAM14讲>的笔记,准备开始入坑了。。。

 

针孔相机模型

    大部分常见的相机都可以抽象为针孔模型:

1.jpg

    其中P点是三维空间中的一点,P’点是P在图片上的投影点,O是相机坐标系的原点,O’是物理成像平面的原点。可得Z/f=X/X’=Y/Y’,即:X’=f*X/Z,Y’=f*Y/Z,其中[X,Y,Z]是P点在相机坐标系的坐标。

    像素坐标系o-u-v在物理成像平面上。原点位于图像的左上角,u轴向右与x轴平行,v轴向下与y轴平行。像素坐标系与物理成像坐标系之间相差一个缩放和一个原点的平移。设像素坐标在u轴上缩放了α倍,在v轴上缩放了b倍,同时原点平移了[cx,cy],则P’的物理坐标与像素坐标的关系为:u=α*X'+cx, v=β*Y'+cy。代入X'和Y',并把α*f合并为fx,β*f合并为fy,得:

2.jpg

    其中,f的单位为米,α, β的单位为像素/米,所以fx, fy和cx, cy的单位为像素。写成矩阵形式:

3.jpg

    或:

4.jpg

    其中K称为相机的内参数矩阵(Camera Intrinsics)。内参通常在出厂后是固定的,有时需要自己确定内参,也就是标定

    点P在世界坐标系中的坐标为Pw,在相机坐标系中的坐标为P,P是Pw根据相机当前位姿从世界坐标系变换到相机坐标系下的结果。相机的位姿由相机相对于世界坐标的旋转矩阵R平移向量t来描述,则有:

5.jpg

    T是R和t构成的齐次坐标,先与Pw相乘,再与K相乘。该公式描述了P点的世界坐标到像素坐标的投影关系,其中相机的位姿R,t又被称为外参数(Camera Extrinsics)

    换个角度,也可以先把P点从世界坐标系投影到相机坐标系,再投影到像素坐标系。其中投影到相机坐标系的时候,可以去掉坐标的最后一维,也就是深度维,把该维度置为1。得到P点在相机归一化平面上的投影:

6.jpg

    归一化坐标可看成相机前方z = 1 处的平面上的一个点,这个 z = 1 平面也称为归一化平面。归一化坐标再左乘内参就得到了像素坐标,所以可以把像素坐标 [u, v]看成对归一化平面上的点进行量化测量的结果,即像素坐标系也可以放在归一化平面上。

    从该过程可知,空间点的深度信息在投影过程中被丢失了,单目视觉中没法得到像素点的深度值。如下所示:

7.jpg

 

双目相机模型

    双目相机一般由水平放置的左眼相机和右眼相机组成,可以把两个相机都看作针孔相机。因为是水平放置的,意味着两个相机的光圈中心都位于x轴上,两者之间的距离称为双目相机的基线(Baseline)。双目相机的成像模型如下:

8.jpg

根据三角形的相似性,有:

9.jpg

    z是相机坐标系中P点的z维数值(即P点的深度),f是相机的焦距,uL和uR是像素坐标系(这里把成像平面放在相机前面,等价与放在后面的情况)的坐标值,d为左右图的横坐标之差,称为视差(Disparity)

    由z=fb/d可知,根据视差,可以估计像素与相机之间的距离。视差与距离成反比:视差越大,距离越近。由于视差最小为一个像素,于是双目的深度存在一个理论上的最大值,由 fb 确定。当基线越长时,双目能测到的最大距离就会越远。

    虽然由视差计算深度的公式很简洁,但视差d本身的计算却比较困难,需要确切地知道左眼图像某个像素出现在右眼图像的哪一个位置(即对应关系)。常用的计算视差的算法有SAD,GC,SGBM,DP,BM等,比较如下

10.jpg

 

SGBM

    semi-global matching(SGM)是一种用于计算双目视觉中视差(disparity)的半全局匹配算法,在OpenCV中的实现为semi-global block matching(SGBM)https://blog.csdn.net/A_L_A_N/article/details/81490043 

 

OpenCV实例

    因此跟Anaconda冲突了,PCL死活编译不过,因此这里运行高博给的代码,他是用Pangolin显示点云:

CMakeLists.txt

cmake_minimum_required(VERSION 2.6)
project(imagebinoculartest)
# 添加c++ 11标准支持
set( CMAKE_CXX_FLAGS "-std=c++11" )

find_package( OpenCV 3 REQUIRED )
find_package( Pangolin )
include_directories( ${OpenCV_INCLUDE_DIRS} )
include_directories("/usr/include/eigen3")
include_directories( ${Pangolin_INCLUDE_DIRS} )

add_executable(imagebinoculartest main.cpp)
target_link_libraries(imagebinoculartest ${OpenCV_LIBS})
target_link_libraries( imagebinoculartest ${Pangolin_LIBRARIES} )
install(TARGETS imagebinoculartest RUNTIME DESTINATION bin)

main.cpp

#include <iostream>
#include <chrono>
#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <Eigen/Core>
#include<opencv2/calib3d/calib3d.hpp>
#include <pangolin/pangolin.h>
using namespace std;
using namespace Eigen;
using namespace cv;

//高博用pangolin中显示点云
void showPointCloud(const vector<Vector4d, Eigen::aligned_allocator<Vector4d>> &pointcloud);
int main ( int argc, char** argv )
{
    double fx = 718.856, fy = 718.856, cx = 607.1928, cy = 185.2157;// 内参
    double b = 0.573;// 基线
        
    cout << "OpenCV version : " << CV_VERSION << endl;
   
    Mat leftImg=imread("left.png",0);
    Mat rightImg=imread("right.png",0);
  
    imshow ( "leftImg", leftImg);
    imshow ( "rightImg", rightImg);
    waitKey ( 0 );
    
    //OpenCV实现的SGBM立体匹配算法
    Ptr<StereoSGBM> sgbm = StereoSGBM::create(
        0,//minDisparity 最小视差
        96, //numDisparities 视差搜索范围,值必需为16的整数倍。最大搜索边界=最小视差+视差搜索范围
        9, //blockSize 块大小
        //8*cn*sgbm.SADWindowSize*sgbm.SADWindowSize;
        8 * 9 * 9, //P1 控制视差变化平滑性的参数。P1、P2的值越大,视差越平滑。P1是相邻像素点视差增/减 1 时的惩罚系数;P2是相邻像素点视差变化值大于1时的惩罚系数。P2必须大于P1。
        //32*cn*sgbm.SADWindowSize*sgbm.SADWindowSize
        32 * 9 * 9, //P2
        1, //disp12MaxDiff 左右一致性检测最大容许误差阈值。
        63, //preFilterCap,预处理时映射参数
        10, //uniquenessRatio 唯一性检测参数,
        100, //speckleWindowSize 视差连通区域像素点个数的大小。对于每一个视差点,当其连通区域的像素点个数小于speckleWindowSize时,认为该视差值无效,是噪点。
        32//speckleRange 视差连通条件,在计算一个视差点的连通区域时,当下一个像素点视差变化绝对值大于speckleRange就认为下一个视差像素点和当前视差像素点是不连通的。
    );
    
    Mat disparity_sgbm, disparity;
    sgbm->compute(leftImg, rightImg, disparity_sgbm); //计算视差图
    disparity_sgbm.convertTo(disparity, CV_32F, 1.0 / 16.0f);//得到视差图
    
    cv::imshow("disparity", disparity / 96.0);
    cv::waitKey(0);
    
    
    
    // 生成点云
    
    vector<Vector4d, Eigen::aligned_allocator<Vector4d>> pointcloud;
        // 如果机器慢,把后面的v++和u++改成v+=2, u+=2
    for (int v = 0; v < leftImg.rows; v++)
        for (int u = 0; u < leftImg.cols; u++) {
            if (disparity.at<float>(v, u) <= 0.0 || disparity.at<float>(v, u) >= 96.0) 
                continue;
            Vector4d point(0, 0, 0, leftImg.at<uchar>(v, u) / 255.0); // 前三维为xyz,第四维为颜色
            // 根据双目模型计算 point 的位置
            double x = (u - cx) / fx;
            double y = (v - cy) / fy;
            double depth = fx * b/(disparity.at<float>(v, u));
            point[0] = x * depth;
            point[1] = y * depth;
            point[2] = depth;
            pointcloud.push_back(point);
        }
        
    cv::imshow("disparity", disparity / 96.0);
    cv::waitKey(0);
    // 画出点云
    showPointCloud(pointcloud);
    return 0;
}


void showPointCloud(const vector<Vector4d, Eigen::aligned_allocator<Vector4d>> &pointcloud) 
{
    pangolin::CreateWindowAndBind("Point Cloud Viewer", 1024, 768);
    glEnable(GL_DEPTH_TEST);
    glEnable(GL_BLEND);
    glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
    pangolin::OpenGlRenderState s_cam(
        pangolin::ProjectionMatrix(1024, 768, 500, 500, 512, 389, 0.1, 1000),
        pangolin::ModelViewLookAt(0, -0.1, -1.8, 0, 0, 0, 0.0, -1.0, 0.0)
    );
    pangolin::View &d_cam = pangolin::CreateDisplay()
        .SetBounds(0.0, 1.0, pangolin::Attach::Pix(175), 1.0, -1024.0f / 768.0f)
        .SetHandler(new pangolin::Handler3D(s_cam));
    while (pangolin::ShouldQuit() == false) 
    {
        glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
        d_cam.Activate(s_cam);
        glClearColor(1.0f, 1.0f, 1.0f, 1.0f);
        glPointSize(2);
        glBegin(GL_POINTS);
        for (auto &p: pointcloud) {
            glColor3f(p[3], p[3], p[3]);
            glVertex3d(p[0], p[1], p[2]);
        }
        glEnd();
        pangolin::FinishFrame();
        usleep(5000);   // sleep 5 ms
    }
    
    return;
}

    原始左右两图:

11.jpg

    SGBM计算得到的视差图:

12.jpg

    根据视差图得到的点云图:

13.jpg

 

 

参考文献

[0]高翔.视觉SLAM 14讲

陈建驱 发布了74 篇原创文章 · 获赞 33 · 访问量 1万+ 私信 关注

标签:立体匹配,双目,像素,相机,disparity,include,坐标系,视差
来源: https://blog.csdn.net/qq_37394634/article/details/104430333

本站声明: 1. iCode9 技术分享网(下文简称本站)提供的所有内容,仅供技术学习、探讨和分享;
2. 关于本站的所有留言、评论、转载及引用,纯属内容发起人的个人观点,与本站观点和立场无关;
3. 关于本站的所有言论和文字,纯属内容发起人的个人观点,与本站观点和立场无关;
4. 本站文章均是网友提供,不完全保证技术分享内容的完整性、准确性、时效性、风险性和版权归属;如您发现该文章侵犯了您的权益,可联系我们第一时间进行删除;
5. 本站为非盈利性的个人网站,所有内容不会用来进行牟利,也不会利用任何形式的广告来间接获益,纯粹是为了广大技术爱好者提供技术内容和技术思想的分享性交流网站。

专注分享技术,共同学习,共同进步。侵权联系[81616952@qq.com]

Copyright (C)ICode9.com, All Rights Reserved.

ICode9版权所有