ICode9

精准搜索请尝试: 精确搜索
首页 > 其他分享> 文章详细

Transformer_XL原理和code

2020-02-06 16:08:32  阅读:544  来源: 互联网

标签:Transformer code qlen XL self head attn


前言

目前在NLP领域中,处理语言建模问题有两种最先进的架构:RNN和Transformer。RNN按照序列顺序逐个学习输入的单词或字符之间的关系,而Transformer则接收一整段序列,然后使用self-attention机制来学习它们之间的依赖关系。这两种架构目前来看都取得了令人瞩目的成就,但它们都局限在捕捉长期依赖性上。

为了解决这一问题,CMU联合Google Brain在2019年1月推出的一篇新论文《Transformer-XL:Attentive Language Models beyond a Fixed-Length Context》同时结合了RNN序列建模和Transformer自注意力机制的优点,在输入数据的每个段上使用Transformer的注意力模块,并使用循环机制来学习连续段之间的依赖关系。Transformer-XL在多种语言建模数据集(如单词级别的enwik8和字符级别的text8)上实现了目前的SoTA效果,且该模型在推理阶段速度更快,比之前最先进的利用Transformer进行语言建模的方法快300~1800倍。 同时,该论文也放出了其配套源码(包括TensorFlow和PyTorch的)、预训练模型及在各个数据集上训练的超参数,可以说是非常良心了~造福我等伸手党!

本文将主要针对模型原理及其PyTorch实现进行逐一对照解读,因笔者能力有限,如有不详尽之处,可移步文末的传送门进行详细阅读,并欢迎指出~

一. 回顾Transformer

在NLP领域中,一种对语言建模的最常用模型就是RNN,它可以捕捉单词之间的依赖关系。但因为梯度消失和爆炸的问题,RNN变得非常难以训练,LSTM单元和梯度裁剪方法的提出也不足以解决此类问题。同时RNN网络的计算速度往往很慢,其学习长期依赖的能力也较为有限(论文中提到,LSTM语言模型平均只能建模200个上下文词语)。

2017年6月,Google Brain在论文《Attention Is All You Need》中提出的Transformer架构,完全摒弃了RNN的循环机制,采用一种self-attention的方式进行全局处理。其接收一整段序列,并使用三个可训练的权重矩阵——Query、Key和Value来一次性学习输入序列中各个部分之间的依赖关系。Transformer网络由多个层组成,每个层都由多头注意力机制和前馈网络构成。由于在全局进行注意力机制的计算,忽略了序列中最重要的位置信息。Transformer为输入添加了位置编码(Positional Encoding),使用正弦函数完成,为每个部分的位置生成位置向量,不需要学习,用于帮助网络学习其位置信息。其示意如下图所示:
Transformer

二. vanilla Transformer

为何要提这个模型?因为Transformer-XL是基于这个模型进行的改进。

Al-Rfou等人基于Transformer提出了一种训练语言模型的方法( https://arxiv.org/abs/1808.04444 ),来根据之前的字符预测片段中的下一个字符。例如,它使用x1,x2,...,xn−1预测字符xn,而在xn之后的序列则被mask掉。论文中使用64层模型,并仅限于处理 512个字符这种相对较短的输入,因此它将输入分成段,并分别从每个段中进行学习,如下图所示。 在测试阶段如需处理较长的输入,该模型会在每一步中将输入向右移动一个字符,以此实现对单个字符的预测。

vanilla Transformer示意图

该模型在常用的数据集如enwik8和text8上的表现比RNN模型要好,但它仍有以下两个缺点:

a. 上下文长度受限:字符之间的最大依赖距离受输入长度的限制,模型看不到出现在几个句子之前的单词。
b. 上下文碎片:对于长度超过512个字符的文本,都是从头开始单独训练的。段与段之间没有上下文依赖性,会让训练效率低下,也会影响模型的性能。
c. 推理速度慢:在测试阶段,每次预测下一个单词,都需要重新构建一遍上下文,并从头开始计算,这样的计算速度非常慢。

三. Transformer-XL

Transformer-XL架构在vanilla Transformer的基础上引入了两点创新:循环机制(Recurrence Mechanism)和相对位置编码(Relative Positional Encoding),以克服vanilla Transformer的缺点。与vanilla Transformer相比,Transformer-XL的另一个优势是它可以被用于单词级和字符级的语言建模。

1. 引入循环机制

与vanilla Transformer的基本思路一样,Transformer-XL仍然是使用分段的方式进行建模,但其与vanilla Transformer的本质不同是在于引入了段与段之间的循环机制,使得当前段在建模的时候能够利用之前段的信息来实现长期依赖性。如下图所示:

在训练阶段,处理后面的段时,每个隐藏层都会接收两个输入:

该段的前面隐藏层的输出,与vanilla Transformer相同(上图的灰色线)。
前面段的隐藏层的输出(上图的绿色线),可以使模型创建长期依赖关系。
这两个输入会被拼接,然后用于计算当前段的Key和Value矩阵。对于某个段的某一层的具体计算公式如下:

引入循环机制后的计算方式

其中,τ
τ表示第几段,n
n表示第几层,h
h表示隐层的输出。SG(⋅)
SG(⋅)表示停止计算梯度,[hu∘hv]
[h 
u
​    
 ∘h 
v
​    
 ]表示在长度维度上的两个隐层的拼接,W.

.
​    
 是模型参数。乍一看与Transformer中的计算公式很像,唯一关键的不同就在于Key和Value矩阵的计算上,即knτ+1

τ+1
n
​    
 和vnτ+1

τ+1
n
​    
 ,它们基于的是扩展后的上下文隐层状态h˜n−1τ+1
h
~
τ
+
1
n

1
h
~
  
τ+1
n−1
​    
 进行计算,hn−1τ
h
τ
n

1

τ
n−1
​    
 是之前段的缓存。

原则上只要GPU内存允许,该方法可以利用前面更多段的信息,测试阶段也可以获得更长的依赖。

在测试阶段,与vanilla Transformer相比,其速度也会更快。在vanilla Transformer中,一次只能前进一个step,并且需要重新构建段,并全部从头开始计算;而在Transformer-XL中,每次可以前进一整个段,并利用之前段的数据来预测当前段的输出。

2. 相对位置编码

在Transformer中,一个重要的地方在于其考虑了序列的位置信息。在分段的情况下,如果仅仅对于每个段仍直接使用Transformer中的位置编码,即每个不同段在同一个位置上的表示使用相同的位置编码,就会出现问题。比如,第i−2和第i−1段的第一个位置将具有相同的位置编码,但它们对于第i段的建模重要性显然并不相同(例如第i−2段中的第一个位置重要性可能要低一些)。因此,需要对这种位置进行区分。

论文对于这个问题,提出了一种新的位置编码的方式,即会根据词之间的相对距离而非像Transformer中的绝对位置进行编码。在Transformer中,第一层的计算查询qTi和键kj之间的attention分数的方式为:
Transformer的attention计算公式分解

其中,Exi是词i的embedding,Exj是词j的embedding,Ui和Uj是位置向量,这个式子实际上是(Wq(Exi+Ui))T⋅(Wk(Exj+Uj))的展开,就是Transformer中的标准格式。

在Transformer-XL中,对上述的attention计算方式进行了变换,转为相对位置的计算,而且不仅仅在第一层这么计算,在每一层都是这样计算。
Transformer-XL的attention计算公式分解

对比来看,主要有三点变化:

在(b)和(d)这两项中,将所有绝对位置向量Uj都转为相对位置向量Ri−j,与Transformer一样,这是一个固定的编码向量,不需要学习。
在(c)这一项中,将查询的UTiWTq向量转为一个需要学习的参数向量u,因为在考虑相对位置的时候,不需要查询的绝对位置i
i,因此对于任意的i
i,都可以采用同样的向量。同理,在(d)这一项中,也将查询的UTiWTq
 向量转为另一个需要学习的参数向量v。
将键的权重变换矩阵Wk 转为Wk,E和Wk,R,分别作为content-based key vectors和location-based key vectors。
从另一个角度来解读这个公式的话,可以将attention的计算分为如下四个部分:

a. 基于内容的“寻址”,即没有添加原始位置编码的原始分数。
b. 基于内容的位置偏置,即相对于当前内容的位置偏差。
c. 全局的内容偏置,用于衡量key的重要性。
d. 全局的位置偏置,根据query和key之间的距离调整重要性。

3. 整体计算公式

结合上面两个创新点,将Transformer-XL模型的整体计算公式整理如下,这里考虑一个N层的只有一个注意力头的模型:
Transformer-XL的整体计算公式

其中,τ代表第几段,n代表第几层,h0τ:=Esτ定义为第τ段的词向量序列。值得一提的是,计算A矩阵的时候,需要对所有的i−j计算Wnk,RRi−j,如果直接按照公式计算的话,计算时间是O(length)2
2 ,而实际上i−j的范围只从0 ~ length,因此可以先计算好这length个向量,然后在实际计算A
A矩阵时直接取用即可。具体的,设M和L分别为memory和当前段序列的长度,则i−j的范围也就为0 ~ M+L−1。下面的Q矩阵中的每一行都代表着Wk,RRi−j中一个i−j的可能性,即Qk=Wk,RRM+L−1−k 。

Q矩阵则对于上面公式中的(b)项,即qTiWk,RRi−j,其构成的所有可能向量的矩阵为B矩阵,其形状为L∗(M+L),这是我们最终需要的(b)项的attention结果。
B矩阵我们进一步定义B˜ 矩阵为如下:
B矩阵的变换

可见,需要的B矩阵的每一行只是B˜ 的向左shift而已。因此,可以直接利用矩阵乘法计算B˜即可。设Ri−j的维度为dR,qi 的维度为dq ,Wk,R矩阵的维度为dq∗dR,则直接计算矩阵B的时间复杂度为2∗dq∗dR∗L∗(M+L),而计算B˜ 的时间复杂度为L∗dq∗(M+L)+dq∗dR∗(M+L),计算量明显不是一个量级(后者要快很多)。

同理,对于(d)项来说,可以对所有的i−j定义需要的矩阵D为L∗(M+L):
D矩阵

可以用如下的d˜ 来进行shift得到:

D矩阵的变换

四. PyTorch实现

笔者在这里主要研究的是核心模型部分,将针对关键的实现细节进行剖析,想要看完整代码的读者请戳这里

  1. 首先来看RelativePositionalEmbedding部分。
class PositionalEmbedding(nn.Module):
    def __init__(self, demb):
        super(PositionalEmbedding, self).__init__()
        self.demb = demb
        inv_freq = 1 / (10000 ** (torch.arange(0.0, demb, 2.0) / demb))

    def forward(self, pos_seq):
        sinusoid_inp = torch.ger(pos_seq, self.inv_freq)
        pos_emb = torch.cat([sinusoid_inp.sin(), sinusoid_inp.cos()], dim=-1)
        return pos_emb[:,None,:]

这里的demb是相对位置编码的维度,pos_seq是序列的位置向量,在代码里面是torch.arange(klen-1, -1, -1.0),其中的klen是mlen+qlen,从名称和之前的原理介绍可知这里的mlen是memory的长度,qlen是query的长度,这两者组成了key的长度。最终返回的即是R
R向量矩阵,可见是不需要学习的。

接着来看MultiHeadAttention的部分,为了叙述方便,这里的MultiHeadAttn是源代码中的RelMultiHeadAttn和RelPartialLearnableMultiHeadAttn的整合,也即一层self-attention的计算方式。
 


class MultiHeadAttn(nn.Module):
    def __init__(self, n_head, d_model, d_head, dropout, dropatt=0,
                 tgt_len=None, ext_len=None, mem_len=None, pre_lnorm=False):
        super(MultiHeadAttn, self).__init__()

		self.n_head = n_head
        self.d_model = d_model
        self.d_head = d_head
        self.dropout = dropout

        self.qkv_net = nn.Linear(d_model, 3 * n_head * d_head, bias=False)

        self.drop = nn.Dropout(dropout)
        self.dropatt = nn.Dropout(dropatt)
        self.o_net = nn.Linear(n_head * d_head, d_model, bias=False)

        self.layer_norm = nn.LayerNorm(d_model)

        self.scale = 1 / (d_head ** 0.5)

        self.pre_lnorm = pre_lnorm

        self.r_net = nn.Linear(self.d_model, self.n_head * self.d_head, bias=False)

		def _rel_shift(self, x, zero_triu=False):
	        zero_pad = torch.zeros((x.size(0), 1, *x.size()[2:]),
	                               device=x.device, dtype=x.dtype)
	        x_padded = torch.cat([zero_pad, x], dim=1)
	
	        x_padded = x_padded.view(x.size(1) + 1, x.size(0), *x.size()[2:])
	
	        x = x_padded[1:].view_as(x)
	
	        if zero_triu:
	            ones = torch.ones((x.size(0), x.size(1)))
	            x = x * torch.tril(ones, x.size(1) - x.size(0))[:,:,None,None]
	
	        return x

        def forward(self, w, r, r_w_bias, r_r_bias, attn_mask=None, mems=None):
	        qlen, rlen, bsz = w.size(0), r.size(0), w.size(1)
	
	        if mems is not None:
	            cat = torch.cat([mems, w], 0)
	            if self.pre_lnorm:
	                w_heads = self.qkv_net(self.layer_norm(cat))
	            else:
	                w_heads = self.qkv_net(cat)
	            r_head_k = self.r_net(r)
	
	            w_head_q, w_head_k, w_head_v = torch.chunk(w_heads, 3, dim=-1)
	            w_head_q = w_head_q[-qlen:]
	        else:
	            if self.pre_lnorm:
	                w_heads = self.qkv_net(self.layer_norm(w))
	            else:
	                w_heads = self.qkv_net(w)
	            r_head_k = self.r_net(r)
	
	            w_head_q, w_head_k, w_head_v = torch.chunk(w_heads, 3, dim=-1)
	
	        klen = w_head_k.size(0)
	
	        w_head_q = w_head_q.view(qlen, bsz, self.n_head, self.d_head)           # qlen x bsz x n_head x d_head
	        w_head_k = w_head_k.view(klen, bsz, self.n_head, self.d_head)           # qlen x bsz x n_head x d_head
	        w_head_v = w_head_v.view(klen, bsz, self.n_head, self.d_head)           # qlen x bsz x n_head x d_head
	
	        r_head_k = r_head_k.view(rlen, self.n_head, self.d_head)                # qlen x n_head x d_head
	
	        #### compute attention score
	        rw_head_q = w_head_q + r_w_bias                                         # qlen x bsz x n_head x d_head
	        AC = torch.einsum('ibnd,jbnd->ijbn', (rw_head_q, w_head_k))             # qlen x klen x bsz x n_head
	
	        rr_head_q = w_head_q + r_r_bias
	        BD = torch.einsum('ibnd,jnd->ijbn', (rr_head_q, r_head_k))              # qlen x klen x bsz x n_head
	        BD = self._rel_shift(BD)
	
	        # [qlen x klen x bsz x n_head]
	        attn_score = AC + BD
	        attn_score.mul_(self.scale)
	
	        #### compute attention probability
	        if attn_mask is not None and attn_mask.any().item():
	            if attn_mask.dim() == 2:
	                attn_score = attn_score.float().masked_fill(
	                    attn_mask[None,:,:,None], -float('inf')).type_as(attn_score)
	            elif attn_mask.dim() == 3:
	                attn_score = attn_score.float().masked_fill(
	                    attn_mask[:,:,:,None], -float('inf')).type_as(attn_score)
	
	        # [qlen x klen x bsz x n_head]
	        attn_prob = F.softmax(attn_score, dim=1)
	        attn_prob = self.dropatt(attn_prob)
	
	        #### compute attention vector
	        attn_vec = torch.einsum('ijbn,jbnd->ibnd', (attn_prob, w_head_v))
	
	        # [qlen x bsz x n_head x d_head]
	        attn_vec = attn_vec.contiguous().view(
	            attn_vec.size(0), attn_vec.size(1), self.n_head * self.d_head)
	
	        ##### linear projection
	        attn_out = self.o_net(attn_vec)
	        attn_out = self.drop(attn_out)
	
	        if self.pre_lnorm:
	            ##### residual connection
	            output = w + attn_out
	        else:
	            ##### residual connection + layer normalization
	            output = self.layer_norm(w + attn_out)
	
	        return output

其中n_head,d_model,d_head分别表示注意力头的个数,模型的隐层维度,每个头的隐层维度。qkv_net是用于计算query、key和value变换的参数矩阵Wq,Wk,E,Wv ,与标准的Transformer中一致,o_net是用于将所有注意力头的结果拼接后再变换到模型维度的参数矩阵,layer_norm是LayerNormalization层,r_net是用于计算relative position embedding变换的参数矩阵Wk,R。

在前向计算的过程中,w和r分别是上一层的输出以及RelativePositionEmbedding,r_w_bias和r_r_bias分别是u
u向量和v向量,AC是前面公式中的(a)项和(c)项,BD是前面公式中的(b)项和(d)项,根据前面讲的快速计算带有相对位置的项,这里的BD需要进行偏移,即_rel_shift,经过笔者的演算,发现这里经过此函数后的BD并不是想要的B矩阵,其在B矩阵的(M+1)对角线(设主对角线为0,正数即为向右上偏移的量)的右上还有元素,不过后面紧接着就进行了mask。这里的attn_mask即为torch.triu(word_emb.new_ones(qlen, klen), diagonal=1+mlen).byte()[:,:,None]。再往后就是标准的Transformer中的add&norm环节了,就不再赘述。

最后来看memory的更新过程:
 

def _update_mems(self, hids, mems, qlen, mlen):
    # does not deal with None
    if mems is None: return None

    # mems is not None
    assert len(hids) == len(mems), 'len(hids) != len(mems)'

    # There are `mlen + qlen` steps that can be cached into mems
    # For the next step, the last `ext_len` of the `qlen` tokens
    # will be used as the extended context. Hence, we only cache
    # the tokens from `mlen + qlen - self.ext_len - self.mem_len`
    # to `mlen + qlen - self.ext_len`.
    with torch.no_grad():
        new_mems = []
        end_idx = mlen + max(0, qlen - 0 - self.ext_len)
        beg_idx = max(0, end_idx - self.mem_len)
        for i in range(len(hids)):

            cat = torch.cat([mems[i], hids[i]], dim=0)
            new_mems.append(cat[beg_idx:end_idx].detach())

    return new_mems

这里的hids是当前段每层的输出,mems为当前段每层依赖的memory,qlen为序列长度,mlen为当前段依赖的memory的长度。

从代码来看的话,前面的循环示意图似乎有些问题?感觉在训练阶段,对于每个段里面的第二个位置开始的点,都应该连到第一个位置连到的最前面memory?因为用的是同样长度的memory。

五. 实验结果

1. 语言建模指标

在最关心的语言模型建模指标上,论文比较了模型在单词级别和字符级别上不同数据集的表现,并且与RNN和(vanilla) Transformer都做了比较。实验证明,Transformer-XL在各个不同的数据集上均实现了目前的SoTA:在大型单词级别数据集WikiText-103上,Transformer-XL将困惑度从20.5降到18.3;在enwiki8数据集上,12层Transformer-XL的bpc达到了1.06,相同bpc的AI-Rfou的模型( https://arxiv.org/abs/1808.04444 )参数量却是6倍,24层Transformer-XL的bpc更是达到了0.99;在One Billion Word数据集上(仅具有短句的)和Penn Treebank数据集上(小型,仅有1M)也取得了SoTA的效果,前者的困惑度从23.7到21.8,后者的困惑度从55.3到54.5。表明了Transformer-XL在各个数据集下的不俗竞争力。

2. 两个创新点的优势

下图比较了不同上下文长度(即memory的长度)中包不包含循环机制、以及使不使用新位置编码方式的困惑度得分。可见,使用循环机制和相对位置编码的Transformer-XL明显优于其他的模型,并且能够有效利用长期依赖性,而且它能捕获超出RNN 80%的依赖性,和超出Transformer 450%的依赖性。

Transformer-XL的对比实验

3. 测试阶段的速度

Transformer-XL的推理速度也明显快于vanilla Transformer,尤其是对于较长的上下文。比如,在上下文长度为800时,Transformer-XL提速363倍;而当上下文长度增加到3800时,Transformer-XL提速1874倍!

六. 总结

1. 模型特点

在 AI-Rfou 等人提出的vanilla Transformer上做了两点创新:

引入循环机制(Recurrence Mechanism)
相对位置编码(Relative Positional Encoding)
2. 优点

在几种不同的数据集(大/小,字符级别/单词级别等)均实现了最先进的语言建模结果。
结合了深度学习的两个重要概念——循环机制和注意力机制,允许模型学习长期依赖性,且可能可以扩展到需要该能力的其他深度学习领域,例如音频分析(如每秒16k样本的语音数据)等。
在inference阶段非常快,比之前最先进的利用Transformer模型进行语言建模的方法快300~1800倍。
有详尽的源码!含TensorFlow和PyTorch版本的,并且有TensorFlow预训练好的模型及各个数据集上详尽的超参数设置。
3. 不足

尚未在具体的NLP任务如情感分析、QA等上应用。
没有给出与其他的基于Transformer的模型,如BERT等,对比有何优势。
在Github源码中提到,目前的sota结果是在TPU大集群上训练得出,对于我等渣机器党就只能玩玩base模式了。
传送门

论文:https://arxiv.org/pdf/1901.02860.pdf
代码:https://github.com/kimiyoung/transformer-xl
参考:https://www.lyrn.ai/2019/01/16/transformer-xl-sota-language-model

远洋之帆 发布了24 篇原创文章 · 获赞 15 · 访问量 2万+ 私信 关注

标签:Transformer,code,qlen,XL,self,head,attn
来源: https://blog.csdn.net/liangwqi/article/details/104196812

本站声明: 1. iCode9 技术分享网(下文简称本站)提供的所有内容,仅供技术学习、探讨和分享;
2. 关于本站的所有留言、评论、转载及引用,纯属内容发起人的个人观点,与本站观点和立场无关;
3. 关于本站的所有言论和文字,纯属内容发起人的个人观点,与本站观点和立场无关;
4. 本站文章均是网友提供,不完全保证技术分享内容的完整性、准确性、时效性、风险性和版权归属;如您发现该文章侵犯了您的权益,可联系我们第一时间进行删除;
5. 本站为非盈利性的个人网站,所有内容不会用来进行牟利,也不会利用任何形式的广告来间接获益,纯粹是为了广大技术爱好者提供技术内容和技术思想的分享性交流网站。

专注分享技术,共同学习,共同进步。侵权联系[81616952@qq.com]

Copyright (C)ICode9.com, All Rights Reserved.

ICode9版权所有