ICode9

精准搜索请尝试: 精确搜索
首页 > 其他分享> 文章详细

VQA视觉问答基础知识

2019-10-31 20:02:18  阅读:427  来源: 互联网

标签:基础知识 com dataset 问题 图像 VQA 问答 图片


本文记录简单了解VQA的过程,目的是以此学习图像和文本的特征预处理、嵌入以及如何设计分类loss等等.

参考资料:

https://zhuanlan.zhihu.com/p/40704719

https://www.youtube.com/watch?v=ElZADFTer4I

https://www.youtube.com/watch?v=cgOmpgcELPQ https://tryolabs.com/blog/2018/03/01/introduction-to-visual-question-answering/

https://tryolabs.com/blog/2018/03/01/introduction-to-visual-question-answering/

VQA定义:

给定一张图像和一个相关文字问题,从若干候选文字回答中选出正确答案.

常用策略是CNN提取图像特征,RNN提取文本特征,将图像特征和文本特征进行融合,然后通过全连接层进行分类.关键在于如何融合这两个模态.

Visual Question Answering (VQA) by Devi Parikh

Why Words and Pictures?

  • Applications.应用场景很广.

  • Measuring and demonstrating AI capabilities.通过对image和language的理解,衡量并展现AI的能力.

  • Beyond “bucket” recognition.跳出通常的对于AI任务的分类.

Image captions即为图片加上文字描述,可能存在的问题是,文字描述太过通用,无法详细地描绘出图像中的细节.

构建VQA:

  • 创建数据集,包括coco数据集中的254721张图片、50000张卡通,从Amazon Mechanical Turk为每张图片收集3个问题,每个问题收集10个回答.

  • 38%的问题是binary yes/no, 99%的问题有着<=3个单词的答案.这使得评估变得可行.

  • Input: image和question Output: answer.

  • Image用CNN, Question用RNN和LSTM, 输出是1 of K个最可能的答案.

What such a model can‘t do?

  • 例如“pizza box中剩下了几片菜叶子“的问题.因为该模型不具有计数的功能,

Introduction to Visual Question Answering: Datasets, Approaches and Evaluation

A multi-discipline problem:

  • VQA是跨学科的,至少需要NLP、CV、Knowledge Representation & Resoning等知识.

Available datasets:

  • 好的datasets结合恰当的评估方法是解决许多问题的关键.

  • VQA非常复杂,因此一个好的dataset要足够大,能包含尽可能多种类的图片和问题.许多datasets从COCO(Microsoft Common Objects in Context)数据集中获取图片.

  • COCO数据集大大简化和加速了VQA dataset的构建过程,但仍存在问题.例如收集广泛的、恰当的、没有歧义的probelm,以及可能被利用的biases.

  • The DAQUAR dataset是第一个重要的VQA dataset.全称是DAtaset for QUestion Answering on Real-world images.它的图片基于NYU-Depth V2 Dataset, 包含6974个training问答和5674个testing问答.它的缺点是只包含了室内图像,并且光照条件使得很难回答问题.

  • The COCO-QA dataset包含123287张图片, 78736个training问答和38948testing问答.值得注意的是它的所有答案都是一个单词.缺点是由于问题是由nlp生成的,因此存在一些奇怪的内容,并且只包含目标、颜色、计数和定位的问题.

  • The VQA dataset包含204721张COCO中的图片和50000张卡通图片.每个图片对应3个问题,每个问题对应10个答案.

Current Approaches:

  • VQA所需要的方法大致是:从问题中抽取特征、从图片中抽取特征、将两种特征结合来生成答案.

  • 对于text features,有BoW, LSTM encoders等方法.

  • 对于image features, 有pre-trained CNNs on ImageNet是最常用的.对于Answer, 模型一般会将问题视作一个分类任务.

  • 不同方法的主要区别就是如何结合textual and image features.

  • 一个不好的baseline很可能会给出最频繁出现的答案,或者是随机挑选答案.因此baseline的设计很关键.比较常用的方法是训练一个线性分类器或是网络,将features作为input.

  • Attention-based approaches是让算法专注于最相关的部分.例如“What color is the ball”的关键词就是“color”和“ball”,图像也会认为ball是最重要的一块区域.应用在VQA中,一般会使用spatial attention来生成区域特定特征,用于训练CNN.

  • Bayesian approaches的思想是对于问题和图像特征中同时出现的数据进行建模,作为一种推理关系的方式.

Evaluation metrics:

  • 传统的classic accuracy对于有选项的回答系统不错,但是对于开放式回答系统起不到作用.

  • WUPS估计一个回答和标准答案的语义距离,结果在0和1之间.使用WorldNet来计算语义树中的距离,从而衡量相似性.另外还会将相似性较低的答案的得分额外下降.缺点是太依赖WorldNet.

标签:基础知识,com,dataset,问题,图像,VQA,问答,图片
来源: https://www.cnblogs.com/limitlessun/p/11773341.html

本站声明: 1. iCode9 技术分享网(下文简称本站)提供的所有内容,仅供技术学习、探讨和分享;
2. 关于本站的所有留言、评论、转载及引用,纯属内容发起人的个人观点,与本站观点和立场无关;
3. 关于本站的所有言论和文字,纯属内容发起人的个人观点,与本站观点和立场无关;
4. 本站文章均是网友提供,不完全保证技术分享内容的完整性、准确性、时效性、风险性和版权归属;如您发现该文章侵犯了您的权益,可联系我们第一时间进行删除;
5. 本站为非盈利性的个人网站,所有内容不会用来进行牟利,也不会利用任何形式的广告来间接获益,纯粹是为了广大技术爱好者提供技术内容和技术思想的分享性交流网站。

专注分享技术,共同学习,共同进步。侵权联系[81616952@qq.com]

Copyright (C)ICode9.com, All Rights Reserved.

ICode9版权所有